题目大意:
对于一个长度不超过10^5的数列,找出它的子数列,使得子数列中各项的和最大,求子数列的最大和
大致思路:
用dp[ i ]表示当前到达第 i 项时,以第 i 项作为子数列的结尾能得到的最大和,那么可以发现转移方程:
dp[ i + 1] = max(dp[ i ] + a[ i + 1], a[ i + 1])
而最终的答案就是dp[ 1 ~ n ] 的最大值
在转移时记录当前的状态的来源即可知道起点和终点
代码如下:
Result : Accepted Memory : 1464 KB Time : 46 ms
/*
* Author: Gatevin
* Created Time: 2014/8/3 12:14:00
* File Name: test.cpp
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
int t,n;
int dp[100010];
int st[100010];
int a[100010];
int main()
{
cin>>t;
int cas = 1;
while(t--)
{
cin>>n;
for(int i = 1; i <= n; i++)
{
cin>>a[i];
}
st[1] = 1;
dp[1] = a[1];
for(int i = 2; i <= n; i++)
{
if(dp[i - 1] + a[i] < a[i])
{
dp[i] = a[i];
st[i] = i;
}
else
{
dp[i] = dp[i - 1] + a[i];
st[i] = st[i - 1];
}
}
int max = dp[1];
int maxi = 1;
for(int i = 1; i <= n; i++)
{
if(max < dp[i])
{
max = dp[i];
maxi = i;
}
}
if(cas >= 2)
{
cout<<endl;
}
cout<<"Case "<<cas<<":"<<endl;
cout<<dp[maxi]<<" "<<st[maxi]<<" "<<maxi<<endl;
cas++;
}
return 0;
}