HDU 1003 Max Sum 动态规划

题目大意:

对于一个长度不超过10^5的数列,找出它的子数列,使得子数列中各项的和最大,求子数列的最大和


大致思路:

用dp[ i ]表示当前到达第 i 项时,以第 i 项作为子数列的结尾能得到的最大和,那么可以发现转移方程:

dp[ i + 1] = max(dp[ i ] + a[ i + 1], a[ i + 1])

而最终的答案就是dp[ 1 ~ n ] 的最大值

在转移时记录当前的状态的来源即可知道起点和终点


代码如下:

Result  :  Accepted     Memory  :  1464 KB     Time  :  46 ms

/*
 * Author: Gatevin
 * Created Time:  2014/8/3 12:14:00
 * File Name: test.cpp
 */
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;

int t,n;
int dp[100010];
int st[100010];
int a[100010];
int main()
{
    cin>>t;
    int cas = 1;
    while(t--)
    {
       cin>>n;
       for(int i = 1; i <= n; i++)
       {
          cin>>a[i];
       }
       st[1] = 1;
       dp[1] = a[1];
       for(int i = 2; i <= n; i++)
       {
           if(dp[i - 1] + a[i] < a[i])
           {
               dp[i] = a[i];
               st[i] = i;
           }
           else
           {
               dp[i] = dp[i - 1] + a[i];
               st[i] = st[i - 1];
           }
       }
       int max = dp[1];
       int maxi = 1;
       for(int i = 1; i <= n; i++)
       {
           if(max < dp[i])
           {
               max = dp[i];
               maxi = i;
           }
       }
       if(cas >= 2)
       {
           cout<<endl;
       }
       cout<<"Case "<<cas<<":"<<endl;
       cout<<dp[maxi]<<" "<<st[maxi]<<" "<<maxi<<endl;
       cas++;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值