UVA 11354 Bond (LCA + MST) (堆优化的Prim)

题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=54643#problem/G

 

题意:n个点m条无向边相连,每条道路都有一个危险系数,对于q个询问,每个询问都包含一个起点s和终点t的路,使得途径所有边最大危险系数最小

 

思路:题目要求瓶颈路,但由于需要快速回答询问,所以需要做成易于查询的结构。先求MST,然后改为有根树,并利用类似LCA的办法,通过预处理计算anc和maxcost数组,其中anc[i][j]表示结点i的第2^j级祖先的编号,max[i][j]表示结点i和它的2^j级祖先之间的路径上的最大权值. 预处理后,我们对于每次查询的两个结点p, q,可以先把p和q提升到同一级的位置,让后利用类似二进制展开的方法不断把p和q同时往上“提”,并且更新最大边权

 

 

#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <bitset>
#include <functional>
#include <utility>

using namespace std;

const int maxn = 100010;
const int maxm = 200020;
const int inf = 0x3f3f3f3f;

int n, m;
int fa[maxn], cost[maxn], h[maxn];
int anc[maxn][20];
int mcost[maxn][20];

struct edge
{
    int from, to, w, nxt;
    edge() {}
    edge(int from, int to, int w) : from(from), to(to), w(w) {}
    bool operator < (const edge & rhs) const
    {
        return w > rhs.w;
    }
};

struct Prim
{
    int head[maxn], dis[maxn], vis[maxn];
    int dep[maxn], pre[maxn], cnt;
    int n, sum;
    edge e[maxm];

    void init(int n)
    {
        this -> n = n;
        cnt = 0;
        sum = 0;
        memset(head, -1, sizeof(head));
    }

    void add(int u, int v, int w)
    {
        e[cnt].from = u;
        e[cnt].to = v;
        e[cnt].w = w;
        e[cnt].nxt = head[u];
        head[u] = cnt++;
    }

    void prim(int s)
    {
        priority_queue <edge> que;
        memset(dis, inf, sizeof(dis));
        memset(vis, 0, sizeof(vis));
        memset(dep, 0, sizeof(dep));
        memset(pre, -1, sizeof(pre));
        vis[s] = 1;
        dis[s] = 0;
        for(int i = head[s]; ~i; i = e[i].nxt)
        {
            int v = e[i].to;
            dis[v] = e[i].w;
            que.push(edge(s, v, e[i].w));
        }
        while(!que.empty())
        {
            edge now = que.top();
            que.pop();
            int u = now.to;
            if(vis[u])
                continue;
            vis[u] = 1;
            pre[u] = now.from;
            dep[u] = dep[now.from] + 1;
            dis[u]  = now.w;
            sum += now.w;
            for(int i = head[u]; ~i; i = e[i].nxt)
            {
                int v = e[i].to;
                int w = e[i].w;
                if(!vis[v] && dis[v] > w)
                {
                    dis[v] = e[i].w;
                    que.push(edge(u, v, w));
                }
            }
        }
    }
} mst;

void preprocess()
{
    for (int i = 1; i <= n; i++)
    {
        anc[i][0] = fa[i];
        mcost[i][0] = cost[i];
        for (int j = 1; (1 << j) < n; j++) anc[i][j] = -1;
    }
    for (int j = 1; (1 << j) < n; j++)
    {
        for (int i = 1; i <= n; i++)
        {
            if (anc[i][j - 1] != -1)
            {
                int a = anc[i][j - 1];
                anc[i][j] = anc[a][j - 1];
                mcost[i][j] = max(mcost[i][j - 1], mcost[a][j - 1]);
            }
        }
    }
}

int query(int p, int q)
{
    int log;
    if (h[p] < h[q]) swap(p, q);
    for (log = 1; (1 << log) <= h[p]; log++);
    log--;
    int ans = -inf;
    for (int i = log; i >= 0; i--)
    {
        if (h[p] - (1 << i) >= h[q])
        {
            ans = max(ans, mcost[p][i]);
            p = anc[p][i];
        }
    }
    if (p == q) return ans;
    for (int i = log; i >= 0; i--)
    {
        if (anc[p][i] != -1 && anc[p][i] != anc[q][i])
        {
            ans = max(ans, mcost[p][i]);
            p = anc[p][i];
            ans = max(ans, mcost[q][i]);
            q = anc[q][i];
        }
    }
    ans = max(ans, max(cost[p], cost[q]));
    return ans;
}

int main()
{
    int ca = 0;
    while(~scanf("%d%d", &n, &m))
    {
        if(ca++)
            putchar('\n');

        mst.init(n);
        for(int i = 0; i < m; i++)
        {
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w);
            mst.add(u, v, w);
            mst.add(v, u, w);
        }
        mst.prim(1);
//        cout << mst.sum << endl;
        for(int i = 1; i <= n; i++)
        {
            fa[i] = mst.pre[i];
            cost[i] = mst.dis[i];
            h[i] = mst.dep[i];
//            printf("%d %d %d\n", fa[i], cost[i], h[i]);
        }
        preprocess();
        int q;
        scanf("%d", &q);
        while(q--)
        {
            int x, y;
            scanf("%d%d", &x, &y);
            printf("%d\n", query(x, y));
        }
    }
    return 0;
}

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值