HDU 4406 GPA(费用流)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4406

 

题意:有M门课要复习,有N天的复习时间,每天都有K个课时可以复习,每门课有个基础分,每多学一课时该课程就增加一分,每天可学习的课程是给出的,现给出绩点的计算方法,一旦有一门课不及格绩点为为零,问所能达到的最高绩点

 

思路:每科的绩点函数f(x, w) = (4.0 - 3.0 * (100 - x) * (100 - x) / 1600) * w,不难看出这是费用与流量平方成正比的函数关系,故而使用白书上的拆边法建图,因为要尽量保证所有科目及格,故而对于那些基础分不够60的科目源点向其加边费用应为-INF,故而建图如下:

1.源点向每门课连边,若该课基础分 < 60,则先连一条容量为60 - 基础分费用为-INF的边以保证该课能优先达到60,然后对于61~100区间由源点到该门课连40条容量为1,费用为- (f(x +1, w) - f(x, w))的边,该课基础分 >= 60类似最后的处理方法

 

2.每门课与能复习该门课的那些天连边,容量为K费用为0

 

3.每一天向汇点连边容量为K费用为0

 

 

 

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <utility>
#include <cmath>
#include <queue>
#include <set>
#include <map>
#include <climits>
#include <functional>
#include <deque>
#include <ctime>
#include <string>

#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#pragma comment(linker, "/STACK:102400000,102400000")

using namespace std;

const int MAXN = 1000;
const int MAXM = 50000;
const int INF = 1e7;

typedef long long ll;

struct Edge
{
	int to, next, cap, flow;
	double cost;
} edge[MAXM];

int head[MAXN], tol;
int pre[MAXN];
double dis[MAXN];
bool vis[MAXN];
int N;//节点总个数,节点编号从0~N-1

void init(int n)
{
	N = n;
	tol = 0;
	memset(head, -1, sizeof(head));
}

void addedge(int u, int v, int cap, double cost)
{
	edge[tol].to = v;
	edge[tol].cap = cap;
	edge[tol].cost = cost;
	edge[tol].flow = 0;
	edge[tol].next = head[u];
	head[u] = tol++;
	edge[tol].to = u;
	edge[tol].cap = 0;
	edge[tol].cost = -cost;
	edge[tol].flow = 0;
	edge[tol].next = head[v];
	head[v] = tol++;
}

bool spfa(int s, int t)
{
	queue<int>q;
	for (int i = 0; i < N; i++)
	{
		dis[i] = INF;
		vis[i] = false;
		pre[i] = -1;
	}
	dis[s] = 0;
	vis[s] = true;
	q.push(s);
	while (!q.empty())
	{
		int u = q.front();
		q.pop();
		vis[u] = false;
		for (int i = head[u]; i != -1; i = edge[i].next)
		{
			int v = edge[i].to;
			if (edge[i].cap > edge[i].flow &&
			        dis[v] > dis[u] + edge[i].cost )
			{
				dis[v] = dis[u] + edge[i].cost;
				pre[v] = i;
				if (!vis[v])
				{
					vis[v] = true;
					q.push(v);
				}
			}
		}
	}
	if (pre[t] == -1) return false;
	else return true;
}

//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s, int t, double &cost)
{
	int flow = 0;
	cost = 0;
	while (spfa(s, t))
	{
		int Min = INF;
		for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to])
		{
			if (Min > edge[i].cap - edge[i].flow)
				Min = edge[i].cap - edge[i].flow;
		}
		for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to])
		{
			edge[i].flow += Min;
			edge[i ^ 1].flow -= Min;
			if (cost < edge[i].cost * Min + cost)
				return 0;
			else
				cost += edge[i].cost * Min;
		}
		flow += Min;
	}
	return flow;
}

double cal(int x, int w)
{
	return (4.0 - 3.0 * (100 - x) * (100 - x) / 1600) * w;
}

int cre[50], ba[50], a[50][50];

int main()
{
	int n, m, k;
	while (~scanf("%d%d%d", &n, &k, &m) && (n + m + k))
	{
		for (int i = 1; i <= m; i++)
			scanf("%d", &cre[i]);
		for (int i = 1; i <= m; i++)
			scanf("%d", &ba[i]);
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= m; j++)
				scanf("%d", &a[i][j]);

		int s = 0, t = n + m + 1;
		init(t + 1);

		for (int i = 1; i <= n; i++)
			addedge(i + m, t, k, 0);
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= m; j++)
				if (a[i][j])
					addedge(j, i + m, k, 0);

		for (int i = 1; i <= m; i++)
		{
			if (ba[i] < 60)
			{
				addedge(s, i, 60 - ba[i], -INF);
				double p = cal(60, cre[i]);

				for (int j = 61; j <= 100; j++)
				{
					double np = cal(j, cre[i]);
					addedge(s, i, 1, -(np - p));
					p = np;
				}
			}
			else
			{
				double p = cal(ba[i], cre[i]);
				addedge(s, ba[i], 1, p);

				for (int j = ba[i] + 1; j <= 100; j++)
				{
					double np = cal(j, cre[i]);
					addedge(s, i, 1, -(np - p));
					p = np;
				}
			}
		}

		double cost;
		minCostMaxflow(s, t, cost);
		for (int i = head[s]; ~i; i = edge[i].next)
		{
			int v = edge[i].to;
			if (edge[i].flow > 0)
				ba[v] += edge[i].flow;
		}

		double sum = 0, ans = 0;
		for (int i = 1; i <= m; i++)
			sum += cre[i];

		bool flag = false;
		for (int i = 1; i <= m; i++)
		{
			if (ba[i] < 60)
			{
				flag = true;
				break;
			}
			ans += cal(ba[i], cre[i]) / sum;
		}
		if (flag) ans = 0;
		printf("%.6f\n", ans);
	}
	return 0;
}

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值