排序概念:
1.内部排序:
工具类中定义交换数组元素、生成数据源等方法(用于下面的排序):
import java.util.Random;
public class SortUtil {
// 通过数组下标交换元素位置
public static void swap(int[] data, int i, int j) {
int temp = data[i];
data[i] = data[j];
data[j] = temp;
}
// 生成and显示数据源
public static void DataSrc(int[] is) {
for (int i = 0; i < is.length; i++) {
is[i] = new Random().nextInt(100);
}
System.out.print("源数据:\t");
for (int i = 0; i < is.length; i++) {
System.out.print(+is[i] + " ");
}
System.out.println();
}
// 显示最终排序结果
public static void showRes(int[] is) {
System.out.print("排序结果:\t");
for (int i = 0; i < is.length; i++) {
System.out.print(+is[i] + " ");
}
}
// 显示每此排序后的情况
public static void showEach(int[] is, int i) {
System.out.print("第" + (i + 1) + "次排序:\t");
for (int k = 0; k < is.length; k++) {
System.out.print(is[k] + " ");
}
System.out.println();
}
}
1.1冒泡排序:
冒泡排序的基本思想是:对待排序记录关键字从后往前(逆序)进行多遍扫描,当发现相邻两个关键字的次序与排序要求的规则不符时,就将这两个数据进行交换,这样,关键字较小的记录将逐渐从后往前移动,就像气泡在水中 向上浮一样,所以该算法也称为气泡排序法.
冒泡排序图解:
代码实现:
public class BubbleSort {
public static void main(String[] args) {
int[] is = new int[10];
// 在工具类生成10个100以内随机数作为数据源并显示
SortUtil.DataSrc(is);
for (int i = 0; i < is.length - 1; i++) {
for (int j = 0; j < is.length - i - 1; j++) {
if (is[j] > is[j + 1]) {
SortUtil.swap(is, j, j + 1);// 通过下标对两个数进行位置交换
}
}
// 显示每一次排序的结果
SortUtil.showEach(is, i);
}
// 显示最终排序结果
SortUtil.showRes(is);
}
}
排序结果及过程:
1.2快速排序:
快速排序使用分支策略来把排序元素序列分为两个子序列,具体步骤为:
(1):从数列中挑出一个元素,该元素称为"基准".
(2):扫描一遍数列,将所有比"基准"小的元素排在基准前面,所有比"基准"大的元素排在"基准"后面.
(3):通过递归,将各个子序列划分为更小的序列,直到把小于"基准"元素的子数列和大于基准元素的子序列排序.
快速排诉步骤:
快速排序实现:
public class QuickSort {
public static void main(String[] args) {
int[] is = new int[10];
SortUtil.DataSrc(is);
quickSort(is, 0, is.length-1);
SortUtil.showRes(is);
}
private static void quickSort(int[] data, int i, int j) {
int pivotIndex = (i + j) / 2;
SortUtil.swap(data, pivotIndex, j);
int k = partition(data, i - 1, j, data[j]);
SortUtil.swap(data, k, j);
if ((k - i) > 1)
quickSort(data, i, k - 1);
if ((j - k) > 1)
quickSort(data, k + 1, j);
}
private static int partition(int[] data, int l, int r, int pivot) {
do {
while (data[++l] < pivot)
;
while ((r != 0) && data[--r] > pivot)
;
SortUtil.swap(data, l, r);
} while (l < r);
SortUtil.swap(data, l, r);
return l;
}
}
快速排序结果:
--------------------------------------------------------
1.3简单选择排序:
选择排序的基本思想:对n个记录进行扫描,选择最小的记录,将其输出,接着在剩下的n-1个记录中进行扫描,选择最小的记录将其输出,...不断重复这个过程,直到只剩一个记录为止.
简单选择排序:
简单选择排序实现:
public class SelectionSort {
public static void main(String[] args) throws Exception {
int[] is = new int[10];
SortUtil.DataSrc(is);
sort(is);
SortUtil.showRes(is);
}
private static void sort(int[] is) {
for (int i = 0; i < is.length - 1; i++) {
for (int j = i + 1; j < is.length; j++) {
if (is[i] > is[j]) {
SortUtil.swap(is, i, j);
}
}
SortUtil.showEach(is, i);
}
}
}
运行结果:
1.4 堆排序
堆排序是一个完全二叉树,树中的每个结点对应于原始数据的一个记录,并且每个结点应该满足以下条件:非叶结点的数据大于或等于其左、右孩子的
数据(若是按照从小到大的顺序排序,则要求非叶结点的数据小于或等于其左、右孩子结点的数据).
由堆的定义可以看出,其根结点为最大值,堆排序就是利用这一特点进行的,堆排序的过程包括两个阶段:
(1):将无序的数据构成堆(即用无序数据生成满足堆定义的完全二叉树).
(2):利用堆排序(用上一步生成的堆生成有序的数据,实际上就是对完全二叉树进行遍历).
例子:69,65,90,37,92,6,28,54:
树的生成过程:
堆排序输出过程(每生成一个数后要树的结构改变,要重新生成一次):
堆排序实现:
public class DeapSort {
public static void main(String[] args) {
int[] is = new int[10];
SortUtil.DataSrc(is);
sort(is);
SortUtil.showRes(is);
}
public static void sort(int[] data) {
MaxHeap h = new MaxHeap();
h.init(data);
for (int i = 0; i < data.length; i++)
h.remove();
System.arraycopy(h.queue, 1, data, 0, data.length);
}
private static class MaxHeap {
private int size = 0;
private int[] queue;
void init(int[] data) {
this.queue = new int[data.length + 1];
for (int i = 0; i < data.length; i++) {
queue[++size] = data[i];
fixUp(size);
}
}
public void remove() {
SortUtil.swap(queue, 1, size--);
fixDown(1);
}
// fixdown
private void fixDown(int k) {
int j;
while ((j = k << 1) <= size) {
if (j < size && queue[j] < queue[j + 1])
j++;
if (queue[k] > queue[j]) // 不用交换
break;
SortUtil.swap(queue, j, k);
k = j;
}
}
private void fixUp(int k) {
while (k > 1) {
int j = k >> 1;
if (queue[j] > queue[k])
break;
SortUtil.swap(queue, j, k);
k = j;
}
}
}
}
1.5 直接插入排序法:
插入排序(InsertionSort)的算法描述是一种简单直观的排序算法.它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应的位置并插入.插入排序在实现上,在从后向前扫描的过程中,需要反复把已经排序的元素逐步向后移动,为最新元素提供插入空间.
直接插入排序:
直接插入排序实现:
public class InsertSort {
public static void main(String[] args) {
int[] is = new int[10];
SortUtil.DataSrc(is);
sort(is);
SortUtil.showRes(is);
}
private static void sort(int[] is) {
for (int i = 1; i < is.length; i++) {// 默认只有一个元素时是有序的,所以不用排序
for (int j = i; j > 0; j--) {
if (is[j] < is[j - 1])
SortUtil.swap(is, j, j - 1);
}
}
}
}
1.6希尔排序:
希尔排序又称为缩小增量排序,也属于插入排序类的算法,是对直接插入排序的一种改进.
基本思想就是:将需要排序的序列划分为若干个较小的序列,对这些序列 进行直接插入排序,通过这样的操作可使用需要排列的数列基本有序,最后再使用一次直接插入排序,这样,首先对数量较小的序列进行直接插入排序可提高效率,最后对基本有序的序列进行直接插入排序,也可提高效率,排序过程的效率得到提升.
希尔排序过程图解:
希尔排序实现:
public class ShellSort {
public static void main(String[] args) {
int[] is = new int[10];
SortUtil.DataSrc(is);
sort(is);
SortUtil.showRes(is);
}
public static void sort(int[] data) {
for (int i = data.length / 2; i > 2; i /= 2) {
for (int j = 0; j < i; j++) {
insertSort(data, j, i);
}
}
insertSort(data, 0, 1);
}
private static void insertSort(int[] data, int start, int inc) {
for (int i = start + inc; i < data.length; i += inc) {
for (int j = i; (j >= inc) && (data[j] < data[j - inc]); j -= inc) {
SortUtil.swap(data, j, j - inc);
}
}
}
}
1.7合并排序(MergeSort):
就是将两个或多个有序表合并成一个有序表.
合并排序图解:
合并排序实现:
public class MergeSort {
public static void main(String[] args) {
int[] is = new int[10];
SortUtil.DataSrc(is);
sort(is);
SortUtil.showRes(is);
}
public static void sort(int[] data) {
int[] temp = new int[data.length];
mergeSort(data, temp, 0, data.length - 1);
}
private static void mergeSort(int[] data, int[] temp, int l, int r) {
int mid = (l + r) / 2;
if (l == r)
return;
mergeSort(data, temp, l, mid);
mergeSort(data, temp, mid + 1, r);
for (int i = l; i <= r; i++) {
temp[i] = data[i];
}
int i1 = l;
int i2 = mid + 1;
for (int cur = l; cur <= r; cur++) {
if (i1 == mid + 1)
data[cur] = temp[i2++];
else if (i2 > r)
data[cur] = temp[i1++];
else if (temp[i1] < temp[i2])
data[cur] = temp[i1++];
else
data[cur] = temp[i2++];
}
}
}
2.外部排序:
外部排序指的是大文件的排序,当待排序的文件很大时,无法将整个文件的所有记录同时调入内存进行排序,只能将文件存放在外存,这种排称为外部排序。外部排序的过程主要是依据数据的内外存交换和“内部归并”两者结合起来实现的。