线性规划以网络流24题の10 餐巾计划问题(费用流)

在连续的N天里面,餐厅每天需要的餐巾数为ri,新买一块餐巾需要p元,送到快洗部,每块f元,需m天洗好,送到慢洗部,每块s元,要n天洗好,每天可以选择送或者不送。求N天的最小费用。

http://wikioi.com/problem/1237/

将每天拆成两个点,要用的Y和用过的X。

显然要从源点向X连一条容量为ri费用为0的边,从Y向汇点连一条容量为ri费用为0的边。

餐巾可以买新的,所以从源点向Y(要用的)连一条容量为inf费用为p的边;

可以送到快洗部,从X向Y+m(Y+m<=N)连一条容量为inf费用为f的边;

可以送到慢洗部,从X向Y+n(Y+n<=N)连一条容量为inf费用为s的边;

还可以留到下一天送洗,从X向X+1(X+1<=N)连一条容量为inf费用为0的边。

//#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

typedef double DB;
typedef long long ll;
typedef pair<int, int> PII;

#define pb push_back
#define MP make_pair
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1

const DB eps = 1e-6;
const int inf = ~0U>>1;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1000000007;
const int maxn = 40000 + 10;

///先调用init,然后while(spfa()) dfs();
const int maxv = 10000 + 10;///顶点数
const int maxe = 1000000 + 10;///边数
struct node{
    int u, v, w, cap, next; ///cap = 容量, w = 费用
}edge[maxe];
int head[maxv], d[maxv], pre[maxv];
bool vis[maxv];
int cnt, st, ed, maxflow, mincost;
void addedge(int v, int u, int cap, int w){
    edge[cnt].u = v; edge[cnt].v = u; edge[cnt].w = w; edge[cnt].cap = cap; edge[cnt].next = head[v]; head[v] = cnt++;
    edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = -w; edge[cnt].cap = 0; edge[cnt].next = head[u]; head[u] = cnt++;
    //printf("u:%d, v:%d, cap:%d, w:%d\n", u, v, cap, w);
}
bool spfa(){///找最短路
    memset(vis, false, sizeof(vis));
    memset(d, 0x3f, sizeof(d));
    int maxt = d[0];
    d[st] = 0; pre[st] = -1; vis[st] = 1;
    queue<int> Q;
    Q.push(st);
    while(!Q.empty()){
        int now = Q.front(); Q.pop();
        vis[now] = 0;
        for(int i=head[now]; ~i; i=edge[i].next){
            int k = edge[i].v;
            if(edge[i].cap && d[now] + edge[i].w < d[k]){
                d[k] = d[now] + edge[i].w;
                pre[k] = i; ///通过pre数组查找增广路径上的边,求出残留容量的最小值
                if(!vis[k]){
                    vis[k] = 1; Q.push(k);
                }
            }
        }
    }
    return d[ed] < maxt;
}
void dfs(){///流过的值是最短路中容量最小的
    int mi = 0x3f3f3f3f;
    for(int i=pre[ed]; ~i; i=pre[edge[i].u])mi = min(mi, edge[i].cap);
    maxflow += mi;
    for(int i=pre[ed]; ~i; i=pre[edge[i].u]) {
        edge[i].cap -= mi; edge[i ^ 1].cap += mi;
        mincost += mi * edge[i].w;
    }
}
void init(int source, int sink){
    memset(head, -1, sizeof(head)); cnt = 0;
    st = source; ed = sink;///源点和汇点
    maxflow = mincost = 0;///最大流和最小费用
}

int N, p, m, f, n, s, r;
int main(){
    scanf("%d%d%d%d%d%d", &N, &p, &m, &f, &n, &s);
    init(0, 2 * N + 1);
    for(int i=1; i<=N; i++){
        scanf("%d", &r);
        addedge(st, i + N, inf, p);
        addedge(i + N, ed, r, 0);
        addedge(st, i, r, 0);
        if(i != N) addedge(i, i + 1, inf, 0);
        if(i + m <= N) addedge(i, i + m + N, inf, f);
        if(i + n <= N) addedge(i, i + n + N, inf, s);
    }
    while(spfa()) dfs();
    printf("%d\n", mincost);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值