A-Fast-RCNN: Hard positive generation via adversary for object detection

https://github.com/xiaolonw/adversarial-frcnn

  • Object detection requires the ability to be robust to illumination, deformation, occlusion and intra-class variations.

  • data-driven strategy – collect large-scale datasets which have object instances under different conditions.

  • The hope is that these examples capture all possible variations of a visual concept and the classifier can then effectively model invariance to them.

  • long tail : How can we sample such occlusions and deformations which lie on the tail?

https://mp.weixin.qq.com/s?__biz=MzA3Mjk0OTgyMg==&mid=2651123383&idx=1&sn=c2288947a721c5b88a5752bfac2ab5a2&chksm=84e6c7e6b3914ef0099c4cde6a1f2abad7623c1241a8f25cd2fbc18461b8aeb0fcb83778d0ce&mpshare=1&scene=1&srcid=0607ffLi3ZiOtO92OBb8BtLt&pass_ticket=P1YKbdSYRiC8HMaaqQDBffu2sMVg%2BMSXav4J1J6rknS%2FKu%2BERXnonUMhNLlNJYRB#rd

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭