Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6HintIn the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.任何两个数相乘的最低位一定是它们最低位相乘所得结果的最低位。如9999 可转化为求99个9相乘后最低位是什么,而同一个数连乘结果是具有周期性的,周期不大于10,所以可以通过找规律解决。#include<stdio.h> int r[25]={0,1,4,7,6,5,6,3,6,9,0,1,6,3,6,5,6,7,4,9,0}; int main() { int t,n; scanf("%d",&t); while(t--) { scanf("%d",&n); printf("%d\n",r[n%20]); } return 0; }
还可以用快速幂求解#include<iostream> using namespace std; int judge(int n) { int k=n,a=n,b=1; a %= 10; while(k > 1) { if(k%2) { b *= a; b %= 10; --k; } else { a *= a; a %= 10; k /= 2; } } a *= b; a %= 10; return a; } int main() { int T,n; cin>>T; while(T--) { cin>>n; cout<<judge(n)<<endl; } return 0; }
本文介绍了一种高效算法来求解正整数N的N次方的最右一位数字。通过发现周期性规律或使用快速幂运算,可以在短时间内得出结果。适用于大范围内的输入数据。
616

被折叠的 条评论
为什么被折叠?



