hive> explain insert overwrite TABLE lpx SELECT t1.bar, t1.foo, t2.foo FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) ;
OK
ABSTRACT SYNTAX TREE:
(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF (TOK_TABNAME pokes) t1) (TOK_TABREF (TOK_TABNAME invites) t2) (= (. (TOK_TABLE_OR_COL t1) bar) (. (TOK_TABLE_OR_COL t2) bar)))) (TOK_INSERT (TOK_DESTINATION (TOK_TAB (TOK_TABNAME lpx))) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL t1) bar)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL t1) foo)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL t2) foo)))))
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1
Stage-2 depends on stages: Stage-0
STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
t1
TableScan
alias: t1
Reduce Output Operator
key expressions:
expr: bar
type: string
sort order: +
Map-reduce partition columns:
expr: bar
type: string
tag: 0
value expressions:
expr: foo
type: int
expr: bar
type: string
t2
TableScan
alias: t2
Reduce Output Operator
key expressions:
expr: bar
type: string
sort order: +
Map-reduce partition columns:
expr: bar
type: string
tag: 1
value expressions:
expr: foo
type: int
Reduce Operator Tree:
Join Operator
condition map:
Inner Join 0 to 1
condition expressions:
0 {VALUE._col0} {VALUE._col1}
1 {VALUE._col0}
handleSkewJoin: false
outputColumnNames: _col0, _col1, _col5
Select Operator
expressions:
expr: _col1
type: string
expr: _col0
type: int
expr: _col5
type: int
outputColumnNames: _col0, _col1, _col2
File Output Operator
compressed: false
GlobalTableId: 1
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
name: default.lpx
Stage: Stage-0
Move Operator
tables:
replace: true
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
name: default.lpx
Stage: Stage-2
Stats-Aggr Operator
注:
ABSTRACT SYNTAX TREE为抽象语法树
从信息头:
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1
Stage-2 depends on stages: Stage-0
从这里可以看出Plan计划的Job任务结构,整个任务会分为3个Job 执行,
第一个Job 将由Stage-1 构成;
第二个Job处理由Stage-0 构成,Stage-0 的处理必须依赖Stage-1 阶段的结果;
第三个Job处理由Stage-2 构成,Stage-2 的处理必须依赖Stage-0 阶段的结果。
下面分别解释 Stage-1 和 Stage-0,执行SQL可以分成两步:
(1)SELECT t1.bar, t1.foo, t2.foo FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar);
(2)insert overwrite TABLE lpx;
Stage: Stage-1对应一次完整的 Map Reduce任务,包括:Map Operator Tree和Reduce Operator Tree两步操作,Map Operator Tree对应Map任务,Reduce Operator Tree对应Reduce任务。
从Map Operator Tree阶段可以看出进行了两个并列的操作t1和t2,分别SELECT t1.bar, t1.foo FROM t1;和 SELECT t2.foo FROM t2;而且两个Map任务分别产生了Reduce阶段的输入[Reduce Output Operator]。
从Reduce Operator Tree分析可以看到如下信息,条件连接Map 的输出以及通过预定义的输出格式生成符合default.lpx的存储格式的数据存储到HDFS 中。在我们创建lpx表
的时候,没有指定该表的存储格式,默认会以Text 为存储格式,输入输出会以TextInputFormat 与TextOutputFormat 进行读写:
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
name: default.lpx
input format 的值对应org.apache.hadoop.mapred.TextInputFormat,
这是因为在开始的Map 阶段产生的临时输出文件是以TextOutputFormat 格式保存的,自然Reduce 的读取是由TextInputFormat 格式处理读入数据。这些是由Hadoop 的MapReduce 处
理细节来控制,而Hive 只需要指定处理格式即可。
Serde 值为org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe 类,这时这个对象的保存的值为_col0, _col1, _col2,也就是我们预期要查询的t1.bar, t1.foo, t2.foo,这个值具体的应该为_col0+表lpx 设置的列分割符+_col1+表lpx 设置的列分割符+_col2。outputformat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat 可以知道output 的处理是使用该类来处理的。
Stage-0 对应上面提到的第二步操作。这时stage-1 产生的临时处理文件举例如tmp,需要经过stage-0 阶段操作处理到lpx 表中。Move Operator 代表了这并不是一个
MapReduce 任务,只需要调用MoveTask 的处理就行,在处理之前会去检查输入文件是否符合lpx表的存储格式。
OK
ABSTRACT SYNTAX TREE:
(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF (TOK_TABNAME pokes) t1) (TOK_TABREF (TOK_TABNAME invites) t2) (= (. (TOK_TABLE_OR_COL t1) bar) (. (TOK_TABLE_OR_COL t2) bar)))) (TOK_INSERT (TOK_DESTINATION (TOK_TAB (TOK_TABNAME lpx))) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL t1) bar)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL t1) foo)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL t2) foo)))))
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1
Stage-2 depends on stages: Stage-0
STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:
t1
TableScan
alias: t1
Reduce Output Operator
key expressions:
expr: bar
type: string
sort order: +
Map-reduce partition columns:
expr: bar
type: string
tag: 0
value expressions:
expr: foo
type: int
expr: bar
type: string
t2
TableScan
alias: t2
Reduce Output Operator
key expressions:
expr: bar
type: string
sort order: +
Map-reduce partition columns:
expr: bar
type: string
tag: 1
value expressions:
expr: foo
type: int
Reduce Operator Tree:
Join Operator
condition map:
Inner Join 0 to 1
condition expressions:
0 {VALUE._col0} {VALUE._col1}
1 {VALUE._col0}
handleSkewJoin: false
outputColumnNames: _col0, _col1, _col5
Select Operator
expressions:
expr: _col1
type: string
expr: _col0
type: int
expr: _col5
type: int
outputColumnNames: _col0, _col1, _col2
File Output Operator
compressed: false
GlobalTableId: 1
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
name: default.lpx
Stage: Stage-0
Move Operator
tables:
replace: true
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
name: default.lpx
Stage: Stage-2
Stats-Aggr Operator
注:
ABSTRACT SYNTAX TREE为抽象语法树
从信息头:
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1
Stage-2 depends on stages: Stage-0
从这里可以看出Plan计划的Job任务结构,整个任务会分为3个Job 执行,
第一个Job 将由Stage-1 构成;
第二个Job处理由Stage-0 构成,Stage-0 的处理必须依赖Stage-1 阶段的结果;
第三个Job处理由Stage-2 构成,Stage-2 的处理必须依赖Stage-0 阶段的结果。
下面分别解释 Stage-1 和 Stage-0,执行SQL可以分成两步:
(1)SELECT t1.bar, t1.foo, t2.foo FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar);
(2)insert overwrite TABLE lpx;
Stage: Stage-1对应一次完整的 Map Reduce任务,包括:Map Operator Tree和Reduce Operator Tree两步操作,Map Operator Tree对应Map任务,Reduce Operator Tree对应Reduce任务。
从Map Operator Tree阶段可以看出进行了两个并列的操作t1和t2,分别SELECT t1.bar, t1.foo FROM t1;和 SELECT t2.foo FROM t2;而且两个Map任务分别产生了Reduce阶段的输入[Reduce Output Operator]。
从Reduce Operator Tree分析可以看到如下信息,条件连接Map 的输出以及通过预定义的输出格式生成符合default.lpx的存储格式的数据存储到HDFS 中。在我们创建lpx表
的时候,没有指定该表的存储格式,默认会以Text 为存储格式,输入输出会以TextInputFormat 与TextOutputFormat 进行读写:
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
name: default.lpx
input format 的值对应org.apache.hadoop.mapred.TextInputFormat,
这是因为在开始的Map 阶段产生的临时输出文件是以TextOutputFormat 格式保存的,自然Reduce 的读取是由TextInputFormat 格式处理读入数据。这些是由Hadoop 的MapReduce 处
理细节来控制,而Hive 只需要指定处理格式即可。
Serde 值为org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe 类,这时这个对象的保存的值为_col0, _col1, _col2,也就是我们预期要查询的t1.bar, t1.foo, t2.foo,这个值具体的应该为_col0+表lpx 设置的列分割符+_col1+表lpx 设置的列分割符+_col2。outputformat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat 可以知道output 的处理是使用该类来处理的。
Stage-0 对应上面提到的第二步操作。这时stage-1 产生的临时处理文件举例如tmp,需要经过stage-0 阶段操作处理到lpx 表中。Move Operator 代表了这并不是一个
MapReduce 任务,只需要调用MoveTask 的处理就行,在处理之前会去检查输入文件是否符合lpx表的存储格式。