方法一:时间复杂度O(n^2)
状态转移方程为dp[I]=max(dp[i],dp[j]+1) (j<i);
很好理解:假设有一个序列 A={1,2,5,3,4,7};
流程:
dp[i]初值都为1;
1) dp[1]=1;
2)dp[2]=1,A[2]>A[1] dp[2]=max{dp[2], dp[1]+1}=2;
3)dp[3]=1,A[3]>A[3] dp[3]=max{dp[3], dp[1]+1}=2;A[3]>A[2] dp[3]=max{dp[3], dp[2]+1}=3;
4)同上;
5)最后的dp[n]即为最长的序列;
代码如下:
#include <iostream>
#include <algorithm>
#define N 100000
using namespace std;
int a[N];
int dp[N];
int main()
{
int n;
while(cin>>n)
{
for(int i=0;i<n;i++)
{
cin>>a[i];
dp[i]=1;
}
for(int i=0;i<n;i++)
{
for(int j=i-1;j>=0;j--)
{
if(a[j]<a[i])
{
dp[i]=max(dp[i],dp[j]+1);
}
}
}
sort(dp,dp+n);
cout<<dp[n-1]<<endl;
}
return 0;
}
方法二:时间复杂度(O(n*logn))
设A[t]=表示序列的第t个元素,f[t]表示长度为t的序列中最后一个数最小的那个数;
因此我们可以知道f[]数组有一个特殊的性质
f[i]<f[i+1]<f[i+2].......
假设 A[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
初始化 len=1;F[1]=A[1]=2;
1)A[2]=1小于F[1] 因此更新F[1]=A[2]=1;len=1;
2)A[3]=3大于F[1]因此F[++len]=A[3];
。。。。。然后
。。。。。继续
。。。。。更新的结尾
我们模拟这个过程可以发现 更新的时候总是在F找到小于更新值的最大值的位置,因此我们可以用二分进行搜索
例题:HDU1025 Constructing Roads In JGShining's Kingdom
http://acm.hdu.edu.cn/showproblem.php?pid=1025
代码如下:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 500001;
int p[maxn],f[maxn];//f[i]表示长度为i的序列中最后一个数最小的那个数
int binary_search(int a,int l,int r){//在f[]中找到小于等于a的最大的数的序号
while(l<=r){
int mid=(l+r)>>1;
if(a==f[mid]) return mid;
if(a>f[mid]) l=mid+1;
else r=mid-1;
}
return l;
}
int main()
{
int n,cnt=1;;
while(~scanf("%d",&n)){
int pp,rr;
for(int i=0;i<n;i++){
scanf("%d%d",&pp,&rr);
p[pp]=rr;
}
f[1]=p[1];
int len=1;
for(int i=2;i<=n;i++){
int pos=binary_search(p[i],1,len);
f[pos]=p[i];
if(pos>len)
len++;
}
printf("Case %d:\n",cnt++);
if(len==1)
puts("My king, at most 1 road can be built.");
else
printf("My king, at most %d roads can be built.\n",len);
printf("\n");
}
return 0;
}