题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=3113
题意:
求x最小的一对二元组(x,y)满足 x^3 + y^3 =n;
分析:
x^3 + y^3 = n ====>(x + y) * (x^2 -x * y + y^2) = n;// x+y, x^2 -x * y + y^2 都是n的约数
因此我们可以枚举n的因子;
令 x + y = a ------------1)
x^2 -x * y + y^2 = b ------------2)
a * b = n -----------3)
1,2,3) 联立可以得到 x1 = (3 * a + sqrt(12 * b - 3 *a * a) )/6 , x2 = (3 * a - sqrt(12 * b - 3 *a * a) )/6,
在解的过程中我们需要判断 以下两点
1)12 * b - 3 *a * a 是不是完全平方数
2)x1,x2,是不是整数解
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int n,cnt;
int a[500];
void init()//筛选出n的约数
{
cnt=0;
for(int i=1;i*i<=n;i++){
if(n%i==0){
if(i*i!=n){
a[cnt++]=i;
a[cnt++]=n/i;
}
else
a[cnt++]=i;
}
}
}
int main()
{
while(~scanf("%d",&n)){
if(n==0) break;
init();
int ansx=100000000,ansy=10000000,cn=0;
for(int i = 0;i<cnt;i++){//枚举因子
int tmpa=a[i],tmpb=n/a[i];
int tt=(int) sqrt(12*tmpb-3*tmpa*tmpa*1.0);
if(tt*tt!=12*tmpb-3*tmpa*tmpa) continue;
if((3*tmpa+tt)%6==0){
cn++;
if(ansx>(3*tmpa+tt)/6){
ansx=(3*tmpa+tt)/6;
ansy=tmpa-ansx;
}
}
if((3*tmpa-tt)%6==0){
cn++;
if(ansx>(3*tmpa-tt)/6){
ansx=(3*tmpa-tt)/6;
ansy=tmpa-ansx;
}
}
}
if(cn)
printf("%d %d\n",ansx,ansy);
else
puts("Impossible");
}
return 0;
}