题目链接:
http://poj.org/problem?id=2002
题意:
给定n个点 判断这n个点可以构成多少正方形。
分析:
暴力枚举一条边的两个端点,然后根据全等三角形可以求出可以构成正方形的另外两个边的端点,然后判断这两个两存不存在。
因此首先要把所有的点哈希一下,然后依次暴力枚举,因此四条边都统计了一次 因此最后要除4.
代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int mod = 10007;
const int maxn = 1010;
struct nod
{
int x,y;
};
inline int read()//输入外挂
{
char ch=getchar();
int x=0,f=1;
while(ch>'9'||ch<'0')
{
if(ch=='-')f=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0')
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
struct hashmap
{
nod a[maxn];
int head[mod],next[maxn],cnt;
void init()
{
cnt=0;
memset(head,-1,sizeof(head));
memset(next,0,sizeof(next));
}
bool find(nod val)
{
int tmp = (val.x*val.x+val.y*val.y)%mod;
for(int i=head[tmp]; i!=-1; i=next[i])
if(a[i].x==val.x&&a[i].y==val.y)
return true;
return false;
}
void add(nod val)
{
int tmp = (val.x*val.x+val.y*val.y)%mod;
for(int i=head[tmp]; i!=-1; i=next[i])
if(a[i].x==val.x&&a[i].y==val.y)
return;
a[cnt]=val;
next[cnt]=head[tmp];
head[tmp]=cnt++;
}
} h;
nod p[maxn];
int main()
{
int n;
while(~scanf("%d",&n))
{
if(n==0) break;
h.init();
for(int i=0; i<n; i++)
{
p[i].x=read();
p[i].y=read();
h.add(p[i]);
}
int ans = 0;
for(int i=0; i<n; i++)
{
for(int j=i+1; j<n; j++)
{
nod tmp1,tmp2;
tmp1.x = p[i].x - (p[i].y - p[j].y);
tmp1.y = p[i].y + (p[i].x - p[j].x);
tmp2.x = p[j].x - (p[i].y - p[j].y);
tmp2.y = p[j].y + (p[i].x - p[j].x);
if(h.find(tmp1)&&h.find(tmp2)) ans++;
}
}
for(int i=0; i<n; i++)
{
for(int j=i+1; j<n; j++)
{
nod tmp1,tmp2;
tmp1.x = p[i].x + (p[i].y - p[j].y);
tmp1.y = p[i].y - (p[i].x - p[j].x);
tmp2.x = p[j].x + (p[i].y - p[j].y);
tmp2.y = p[j].y - (p[i].x - p[j].x);
if(h.find(tmp1)&&h.find(tmp2)) ans++;
}
}
ans >>= 2;
printf("%d\n",ans);
}
return 0;
}