Codeforces Round #297 (Div. 2) D Arthur and Walls

本文介绍了一道CodeForces D题的解决方法,通过观察2x2子矩阵中的'*'字符来确定需要替换的位置,并使用队列进行迭代更新,最终实现所有符合条件的空地转换为矩形。

原题链接:http://codeforces.com/contest/525/problem/D

题意:给了一个矩阵,里面有墙('*')和空地('.'),然后所有空地(边相邻的)都要是矩形

思路:一开始想的是搜索每个点最远的地方,然后果断T了,因为如果后来搜索的矩形包含前面的矩形的话,一个点可以被访问多次,有很多回溯。

然后看了题解。。有个神奇的现象,我们可以观察2*2的方格,如果只有一个'*' ,那么必然这个'*' 要被替换成 '.',所以我们可以一开始寻找出所有这样的点,然后放入队列里面,拿出一个后检查它周围的点是否满足这个条件,若满足,则放入队列,一直迭代下去即可。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define mem(name,value) memset(name,value,sizeof(name))
#define FOR(i,n) for(int i=1;i<=n;i++)
using namespace std;

const int maxn = 2000+10;

char s[maxn][maxn];
bool vis[maxn][maxn];
int n,m;

bool check(int x,int y){
    if(s[x][y] == '.' || x<1 || x>n || y<1 || y>m) return false;
    if(vis[x][y]) return false;

    if(s[x][y+1] == '.' && s[x+1][y] == '.' && s[x+1][y+1] == '.') return true;
    if(s[x][y-1] == '.' && s[x+1][y] == '.' && s[x+1][y-1] == '.') return true;
    if(s[x][y+1] == '.' && s[x-1][y] == '.' && s[x-1][y+1] == '.') return true;
    if(s[x][y-1] == '.' && s[x-1][y] == '.' && s[x-1][y-1] == '.') return true;
    return false;
}

int main(){
   // freopen("in.txt","r",stdin);
    mem(s,0); mem(vis,false);
    scanf("%d%d",&n,&m);
    FOR(i,n) scanf("%s",s[i]+1);
    queue<int>qx,qy;
    FOR(i,n) FOR(j,m) if(check(i,j)){
        qx.push(i); qy.push(j);
        vis[i][j] = true;
    }
    while(!qx.empty()){
        int x = qx.front(), y = qy.front();
        qx.pop(); qy.pop();
        s[x][y] = '.';
        for(int i=-1;i<=1;i++)
        for(int j=-1;j<=1;j++) if(i||j){
            if(check(x+i,y+j)) qx.push(x+i), qy.push(y+j), vis[x+i][y+j] = true;
        }
    }
    FOR(i,n) printf("%s\n",s[i]+1);
    return 0;
}



在人工智能与机器学习的研究中,数据预处理构成了关键性基础环节,尤其针对遥感影像数据如Landsat8的处理更为显著。Landsat8作为美国陆地卫星计划所提供的高精度地球观测资源,在生态监测、作物评估、城市发展研究等众多科学领域具有广泛应用价值。本项实践聚焦于对Landsat8影像实施系统化批量预处理,为后续深入解析与算法训练奠定数据基础。 数据预处理作为提升数据质量与模型效能的核心流程,涵盖数据净化、空缺值填补、异常数据识别及格式转换等操作。针对Landsat8数据集,需执行云层遮蔽消除、辐射量校准、大气效应修正等专业处理,以排除干扰地表反射率准确性的环境因素。 特征构建是从初始数据中衍生优化特征的重要过程。Landsat8每景影像包含多个独立光谱波段,分别记录不同电磁波谱区间的信息。特征工程可能涉及波段数学组合(如构建归一化植被指数NDVI、水体指数NDWI)、实施主成分降维分析、计算各类光谱指标等,从而提炼出更具地学解释价值的环境特征参数。 在技术实现层面,Python凭借其完善的生态库成为首选工具。专业库rasterio可用于栅格数据读写与操作,geopandas处理地理空间信息,numpy与pandas进行数值运算与表结构管理,scikit-image则提供专业图像处理能力。面对海量数据,批处理机制通过自动化脚本遍历文件系统,结合并行计算模块实现处理效率的显著提升。 标准预处理流程遵循严谨的技术路线:原始影像载入→云掩膜处理→辐射与大气校正→特征衍生→数据标准化→结果存储。各环节均需根据具体研究目标与数据特性进行参数优化。处理成果通常以GeoTIFF格式保存,确保空间参考系与元数据的完整保留。 预处理过程中的质量验证依赖于可视化技术,通过matplotlib等工具生成波段直方图与空间分布图,辅助评估数据转换效果。经规范处理的Landsat8数据可有效支持土地利用分类、植被动态监测、灾害评估、气候变迁研究等应用方向,为随机森林、支持向量机及深度神经网络等预测模型提供优质输入,最终提升模型推理精度与泛化性能。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值