Description
城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求: 1. 改造的那些道路能够把所有的交叉路口直接或间接的连通起来。 2. 在满足要求1的情况下,改造的道路尽量少。 3. 在满足要求1、2的情况下,改造的那些道路中分值最大的道路分值尽量小。任务:作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。
Input
第一行有两个整数n,m表示城市有n个交叉路口,m条道路。接下来m行是对每条道路的描述,u, v, c表示交叉路口u和v之间有道路相连,分值为c。(1≤n≤300,1≤c≤10000)
Output
两个整数s, max,表示你选出了几条道路,分值最大的那条道路的分值是多少。
Sample Input
4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8
Sample Output
3 6
题解
最小生成树。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
int n,m,zz,fa[302],ans;
struct bian{int x,y,v;} e[90002];
bool kp(const bian &i,const bian &j) {return i.v<j.v;}
void init()
{
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=m;i++)
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].v);
sort(e+1,e+m+1,kp);
}
int find(int x)
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
}
void klskl()
{
int i,r1,r2;
for(i=1;i<=n;i++) fa[i]=i;
for(i=1;i<=m;i++)
{r1=find(e[i].x), r2=find(e[i].y);
if(r1!=r2)
{fa[r2]=r1; ans=e[i].v;};
}
printf("%d %d\n",n-1,ans);
}
int main()
{
init(); klskl();
return 0;
}