人脸关键点检测
Peanut_范
计算机视觉、强化学习
展开
-
Cascaded Pyramid Network关键点检测
《Cascaded Pyramid Network for Multi-Person Pose Estimation》概述:论文提出级联金字塔网络(Cascaded Pyramid Network ,简称CPN),包含两个阶段:GlobalNet和RefineNet。GlobalNet是特征金字塔网络,可以定位简单的关键点,如眼睛和手,虽然无法识别被遮挡的关键点,但是可以提供上下文信息,用于推...原创 2019-10-14 16:39:22 · 1271 阅读 · 0 评论 -
快手科技——Animoji
快手科技——Animoji演讲者:快手科技李岩摘录——机器之心我们知道视频是视觉、听觉、文本多种模态综合的信息形式,而用户的行为也是另外一种模态的数据,所以视频本身就是一个多模态的问题,再加上用户行为就更是一种更加复杂的多模态问题。所以多模态的研究对于快手来说,是非常重要的课题。2D 图像驱动 3D 建模实现 Animoji 效果通过苹果的发布会,大家应该都了解 Animoji 这项...翻译 2018-11-11 19:49:49 · 4060 阅读 · 0 评论 -
Windows 环境下编译OpenCV3.4.1和OpenCV-Contrib3.4.1
Windows 环境下编译OpenCV3.4.1和OpenCV-Contrib3.4.11.测试环境Windows7Visual Studio 2015OpenCV3.4.1+OpenCV-Contrib3.4.1OpenCV3.4.1:https://github.com/opencv/opencv/releasesOpenCV-Contrib3.4.1:https://gith...原创 2018-12-16 20:45:12 · 3980 阅读 · 1 评论 -
利用OpenCV进行人脸关键点检测(Facial Landmark Detection)
Summary:利用OpenCV进行人脸关键点检测(Facial Landmark Detection)Author: AmusiDate: 2018-03-20Note: OpenCV3.4以及上支持Facemark转载:https://github.com/amusi/opencv-facial-landmark-detection目录结构:引言...转载 2018-12-16 21:16:40 · 15092 阅读 · 15 评论 -
linux安装dlib,关键点检测
Linux下安装dlib19.6 Face Landmark Detection1、下载dlib下载dlib-19.6.zip2、 C++编译dlib从官网下载的dlib文件如下:从dlib的根目录执行下面语句即可:>>首先进入dlib的根目录下>>再执行如下语句:cd examples #进入dlib下的examples文件夹mkdir build ...原创 2018-12-16 21:32:24 · 5589 阅读 · 1 评论 -
python安装dlib,关键点检测
python 安装dlib Face Landmark Detectiondlib是人脸识别比较有名的库,有c++、Python的接口。使用dlib可以大大简化开发,比如人脸识别,特征点检测之类的工作都可以很轻松实现。关于dlib的安装,直接运行pip install dlib即可。e.g.:pip install dlib-19.6.0-cp36-cp36m-win_amd64.whl命令...原创 2018-12-16 21:37:13 · 1785 阅读 · 0 评论 -
Windows下安装dlib19.6,关键点检测
Windows下安装dlib19.6 Face Landmark Detection1.测试环境Windows10Visual Studio 2015dlib-19.6Windows安装还需要cmake:https://cmake.org/download/2.用CMake编译dlib-19.61).首先打开cmake,where is the source code 选择d...原创 2018-12-16 22:09:33 · 1207 阅读 · 0 评论 -
dlib人脸检测python 与 C++ 结果对比
dlib人脸检测python 与 C++ 结果对比python参考代码:import cv2 import dlibfrom skimage import iodetector = dlib.get_frontal_face_detector()win = dlib.image_window()if __name__ == '__main__': f = r"XZQ.j...原创 2018-12-16 22:19:52 · 1692 阅读 · 2 评论 -
基于Landmark的人脸对齐 计算变换后关键点对应坐标
基于Landmark的人脸对齐 计算变换后关键点对应坐标简介:以5个关键点为例,进行人脸对齐和裁剪,并使用仿射矩阵将原坐标(x, y)变换为新坐标(x’, y’),计算出原图像经过变换后的新图像上的68个关键点信息。参考代码:#coding=utf-8import os,cv2,numpyimport numpy as npimport loggingimport copylogg...原创 2018-12-16 22:36:37 · 9005 阅读 · 11 评论 -
关键点检测——68点图例
来源:百度图片搜索原创 2019-01-03 21:10:51 · 23228 阅读 · 6 评论 -
关键点检测——标签(Ground Truth)构建
关键点检测——标签(Ground Truth)构建Coordinate、Heatmap和Heatmap + Offsets首先介绍一下关键点回归的Ground Truth的构建问题,主要有两种思路,Coordinate和Heatmap,Coordinate即直接将关键点坐标作为最后网络需要回归的目标,这种情况下可以直接得到每个坐标点的直接位置信息;Heatmap即将每一类坐标用一个概率图来...原创 2019-01-02 21:55:24 · 13828 阅读 · 18 评论 -
人脸关键点是越多越好么?1000点和106点有什么区别?
人脸关键点是越多越好么?1000点和106点有什么区别?原文:Megvii旷视科技所谓稠密人脸关键点,即其可检测人脸 1000 个关键点信息,那不禁有人问:“点多就是好么?Face++人工智能开放平台上的稠密关键点和人脸关键点到底有什么区别?我知道看起来点更多了,然后呢……能用在哪?好像普通人脸关键点也可以满足我的需求了呀?“对此,Face++ 也给出了一些解读。1000 点和 106 ...转载 2019-01-09 22:04:55 · 4113 阅读 · 0 评论 -
人脸关键点检测9——DAN
《Deep Alignment Network:A convolutional neural network for robust face alignment》CVPR-2017,Marek Kowalski et al,DANDAN(Deep Alignment Network),与以往级联神经网络输入的是图像的某一部分不同,DAN各阶段网络的输入均为整张图片。当网络均采用整张图片...原创 2018-07-14 22:05:25 · 7118 阅读 · 9 评论 -
人脸关键点检测10——FAN
《How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)》ICCV2017,诺丁汉大学,FAN1.引言: cascaded regression methods 在人脸对齐上取得不错的效果,但是当存在 large...原创 2018-07-14 22:40:45 · 6368 阅读 · 0 评论 -
人脸关键点检测2
《Face Alignment by Deep Convolutional Network with Adaptive Learning Rate》一种新的数据增强的策略:平移和旋转、镜像、图像压缩率一种自适应的学习率算法,确保收敛的更好。Data augmentation: 第一步:轻微的平移和旋转bounding box,可以增加模型对人脸平移及姿态变化的鲁棒性。 第...原创 2018-05-28 23:19:28 · 773 阅读 · 0 评论 -
人脸关键点检测3——DCNN
《Deep Convolutional Network Cascade for Facial Point Detection》2013年,通过3级卷积神经网络来估计人脸关键点(5点),属于级联回归方法。 级联的卷积网络结构: Level1,采用了3个CNN,输入区域分别为整张脸(F1),眼睛和鼻子(EN1),鼻子和嘴(EM1)。F1输入尺寸为39*39,输出5个关键点的坐标;EN1输入...原创 2018-05-31 21:50:50 · 2769 阅读 · 0 评论 -
人脸关键点检测4——Tweaked CNN
《Facial Landmark Detection with Tweaked Convolutional Neural Networks》思路:对CNN提取的特征进行聚类,将各簇对应的样本进行分析,最后发现同一簇表现出“相同属性”(姿态,微笑,性别)的人脸。对此,设计了K个FC5和K个FC6层,用以对不同“面部属性”的人脸进行关键点检测。 Vanilla CNN网络结构: 输入是一...原创 2018-05-31 22:08:28 · 807 阅读 · 0 评论 -
人脸关键点检测5——Face++(1)
《Extensive Facial Landmark Localization with Coarse-to-fine Convolutional Network Cascade》ICCV2013,Face++在DCNN模型上进行改进,提出由粗到精的人脸关键点检测算法。 实现了68个点的高精度定位,该算法将人脸关键点分为内部关键点和轮廓关键点,内部关键点包含眉毛、眼睛、鼻子、嘴巴共计51个...原创 2018-05-31 23:06:20 · 7432 阅读 · 0 评论 -
人脸关键点检测6——Face++(2)
《Coarse-to-fine Face Alignment with Multi-Scale Local Patch Regression》2015年,Face++的改进论文设计思路: 第一步:一个单一的CNN网络去预测全局的人脸关键点; 第二步:根据估计的的尺度和角度,去对人脸图像进行几何的校正; 最后:多尺度的裁剪图像块,作为一系列网络的输入,输出更加精准的位置估计,可...原创 2018-05-31 23:12:22 · 1335 阅读 · 0 评论 -
人脸关键点检测7——Face++(3)
《Approaching Human Level Facial Landmark Localization by Deep Learning》2016年,Face++改进设计思路: 和之前方法类似,第一级进行粗预测,第二级进行精细预测,以关键点为中心的图像patch作为输入,输出结果求平均,作为最后的结果。网路结构: 其中n = 68,k = 3。损失函数: ...原创 2018-05-31 23:17:21 · 2327 阅读 · 0 评论 -
人脸关键点检测8——Face++(4)
《Delving Deep into Coarse-to-fine Framework for Facial Landmark Localization》CVPR2017,Face++改进关键点检测整体的网络结构: 本文提出了一个四阶段简到繁的框架去处理关键点检测任务 Satge1:一个人脸检测器去定位目标区域,接着预测旋转角度,对目标图片进行对齐,然后,对关键点进行粗预测,分...原创 2018-05-31 23:21:39 · 1452 阅读 · 0 评论 -
人脸关键点检测12——An Occluded Stacked Hourglass Approach
《An Occluded Stacked Hourglass Approach to Facial Landmark Localization and Occlusion Estimation》IEEE2017,Kevan Yuen and Mohan M. Trivedi本文主要应用于交通驾驶安全,构建了比较完善的整个系统流程,从人脸识别->关键点检测->头部姿态估计。可...原创 2018-07-14 23:18:09 · 2570 阅读 · 1 评论 -
人脸关键点检测11——Stacked Hourglass Network
《Stacked Hourglass Network for Robust Facial Landmark Localisation》CVPR2017, Jing Yang 、Qingshan Liu本文提出的方法主要由两部分构成,face transformation和stacked Hourglass Networks。 第一步:supervised face transform...原创 2018-07-14 23:09:32 · 5185 阅读 · 5 评论 -
关键点检测——无监督
《Unsupervised Discovery of Object Landmarks as Structural Representations》CVPR2018,Yuting Zhang et al。本文使用无监督的方式来发现结构表现的目标关键点。 网络结构: 采用的是名为 hourglass 的网络构架,以图片作为输出,该网络输出 k+1 个 channel,含有 k 个...原创 2018-07-14 23:42:08 · 4189 阅读 · 0 评论 -
人脸关键点检测FAN——bottleneck blocks
《Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources》这篇文章是对特征点定位网络(pose estimation & facial landmark detection)进行加速和压缩的工作。文章以Hourglas...原创 2018-07-14 22:59:19 · 4374 阅读 · 0 评论 -
人脸关键点检测1——SDN
论文题目:《Effective Face Landmark Localization via Single Deep Network》method: SDN(single deep network)数据集:COFW和300-W(Helen)SDN由直连堆叠的三组层构成,每组包含两个卷积层和一个最大池化层。 网络结构:激活函数和损失函数:euclidean_...原创 2018-05-28 22:03:27 · 1604 阅读 · 0 评论