年龄估计——Ranking-CNN

  • 《Using Ranking-CNN for Age Estimation》
  • CVPR2017,Shixing Chen et al,Ranking-CNN

本文提出了一种考虑与年龄有关的顺序信息,把年龄估计转化为一个排序问题,具体是通过一系列的二分类来实现,最后,通过合计二分类的结果来得到年龄预测结果。
(注:考虑了年龄之间的时间顺序相关性

框架结构:
这里写图片描述

论点:年龄的多分类完全忽略了年龄标签的顺序信息,年龄的回归过度简化成了线性模型。
Ranking-CNN针对不同的年龄段独立学习特征,使得学习的特征具有更有效的表现能力。

一个基本的网络结构:
这里写图片描述
由3个卷积和下采样,以及3个全连接层组成。C1 = 96个55卷积核,ReLU,S2=max pooling
3
3,stride=2,保留feature maps中最显著的特征,LRN,C3=256个55卷积核,ReLU,S4=S2,
LRN,C5=384个3
3的卷积核,S6=S2,F7=512个神经元,紧跟着ReLU和droput,F8=F7,
F9是二分类的输出。图像的输入2562563。
一系列二分类后的年龄预测:

损失函数:

文章中有很多公式推导,没有仔细研读。

测试结果:

从测试结果来看,效果优于DEX网络,但模型构建有点复杂。


注:博众家之所长,集群英之荟萃。

在这里插入图片描述

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 14
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Peanut_范

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值