Large-Margin Softmax Loss

在这里插入图片描述
Large-Margin Softmax Loss被称为L-Softmax loss。我们先从一张图来理解下softmax loss,这张图显示的是不同softmax loss和L-Softmax loss学习到的cnn特征分布。第一列就是softmax,第2列是L-Softmax loss在参数m取不同值时的分布。通过可视化特征可知学习到的类间的特征是比较明显的,但是类内比较散。
而large-margin softmax loss则类内更加紧凑,怎么做到的呢?
最大间隔softmax loss,出发点也是类内压缩和类间分离,对于softmax loss,向量相乘可以转化为cos距离,可以改写为下式:
在这里插入图片描述
softmax loss的目的也是想让两个特征分开,但是设计上没有加强约束,其中m就是约束,是一个控制距离的变量,它越大训练会变得越困难,如下公式所示
看看二分类的情况,对于属于第1类的样本,我们希望
在这里插入图片描述
即:在这里插入图片描述
如果我们对它提出更高的要求呢? 由于cos函数在0~PI区间是递减函数,我们将要求改为
在这里插入图片描述
其中m>=1,
在这里插入图片描述
在这个条件下,原始的softmax条件仍然得到满足。

我们看下图,如果W1=W2,那么满足条件2,显然需要θ1与θ2之间的差距变得更大,原来的softmax的decision boundary只有一个,而现在类别1和类别2的decision boundary不相同,这样类间的距离进一步增加,类内更近紧凑。

在这里插入图片描述
当W1和W2不等(以及x1和x2分布不均匀)时,分类会存在较大的径向偏差,L softmax 依然可以拉大类间的距离。
在这里插入图片描述
更具体的定义如下:
在这里插入图片描述
在这里插入图片描述
L-Softmax loss中,m是一个控制距离的变量,它越大训练会变得越困难,因为类内不可能无限紧凑。

作者的实现是通过一个LargeMargin全连接层+softmax loss来共同实现
针对 φ \varphi φ函数可简化为:
在这里插入图片描述
对于L-Softmax难以收敛的情况,本文进行了优化:
在这里插入图片描述
代码参考: https://github.com/wy1iu/LargeMargin_Softmax_Loss


注:博众家之所长,集群英之荟萃。

在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Peanut_范

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值