HDU 1395 2^x mod n = 1

2^x mod n = 1

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10564 Accepted Submission(s): 3267


Problem Description
Give a number n, find the minimum x(x>0) that satisfies 2^x mod n = 1.

Input
One positive integer on each line, the value of n.

Output
If the minimum x exists, print a line with 2^x mod n = 1.

Print 2^? mod n = 1 otherwise.

You should replace x and n with specific numbers.

Sample Input
  
  
2 5

Sample Output
  
  
2^? mod 2 = 1 2^4 mod 5 = 1

 
数论题又水了,还是要多做才能积累 奋斗!!
 
 

分析:

1、n==1或者n%2==0,都不会有这样的2的幂次存在。

因为2^k(k=1、2、3...)为偶数,n为偶数时显然不存在;n==1则容易验证。

2、n为奇数是则一定存在。

n为奇数,则至少会存在一个偶数模取n等于1。2^k则会找到所有的偶数。

3、2^k%n=(2^a*2^b)%n=((2^a%n)*(2^b%n))%n。(a+b=k)

 
AC的代码:
 
 
#include<stdio.h>
int main()
{
    int n,s,temp;
    while (~scanf("%d",&n))
    {
        if (n==1||n%2==0)
        {
            printf("2^? mod %d = 1\n",n);
        }
        else
        {
            s=1,temp=2;
            while (temp!=1)
            {
                temp=temp*2%n;
                s++;
            }
            printf("2^%d mod %d = 1\n",s,n);
        }
    }
    return 0;
}

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值