上篇文章讲到用极大似然估计去解释最小二乘法。这篇就讲一下最小二乘法中 θ 的解析解求的求解过程
求解过程
假设我们现在有M个N维的样本,我们可以将所有的样本组成一个样本矩阵 X ,那么
目标函数:
J(θ)=12∑i=1m(hθ(x(i))−y(i))2=12(Xθ−Y)T(
上篇文章讲到用极大似然估计去解释最小二乘法。这篇就讲一下最小二乘法中 θ 的解析解求的求解过程
假设我们现在有M个N维的样本,我们可以将所有的样本组成一个样本矩阵 X ,那么
目标函数:
2273
868

被折叠的 条评论
为什么被折叠?