机器学习笔记之(五)最小二乘法中参数解析解的求解过程

上篇文章讲到用极大似然估计去解释最小二乘法。这篇就讲一下最小二乘法中 θ 的解析解求的求解过程

求解过程

假设我们现在有M个N维的样本,我们可以将所有的样本组成一个样本矩阵 X ,那么 X 的每一行对应一个样本,共M行,每一列代表对应样本的一个特征,为了表达方便我们设有一个额外的一维常数项,全为1。

目标函数:

J(θ)=12i=1m(hθ(x(i))y(i))2=12(XθY)T(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值