蓝桥杯 算法训练 最短路

问题描述

给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。

输入格式

第一行两个整数n, m。

接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。

输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据规模与约定

对于10%的数据,n = 2,m = 2。

对于30%的数据,n <= 5,m <= 10。

对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。


//最短路径
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
const int N=20002;
const int INF=10000000;
vector<int> map[N];
vector<int> maplen[N];//这个跟map[N]相结合构成一个图
int dist[N];
int vis[N]={0};
int di[N];
int v=0;
int n,m;
void dijkstra(int k)
{
	int i,j,p,smin;
	for(i=0;i<map[k].size();i++)
	{
		dist[map[k][i]]=maplen[k][i];
		di[v++]=map[k][i];
	}
	dist[k]=0;
	vis[k]=1;
	for(p=1;p<=n;p++)
	{
		smin=INF;
		j=-1;
		int kj;
		for(i=0;i<v;i++)
		{
			if(vis[di[i]]==0&&dist[di[i]]<smin)
			{
				j=di[i];
				smin=dist[di[i]];
			}
		}
		if(j==-1) break;
		else
		{
			//di.erase(itr+kj);
			vis[j]=1;
			for(i=0;i<map[j].size();i++)
			{
				if(vis[map[j][i]]==0&&(smin+maplen[j][i]<dist[map[j][i]]))
				{
					if(dist[map[j][i]]==INF) di[v++]=map[j][i];
					dist[map[j][i]]=smin+maplen[j][i];
				}
			}
		}
	}
}
int main()
{
	//freopen("zuiduan1.in","r",stdin);
	scanf("%d%d",&n,&m);
	int i;
	for(i=1;i<=n;i++)
	{
		dist[i]=INF;
	}
	int ai,aj,ad;
	for(i=0;i<m;i++)
	{
		scanf("%d%d%d",&ai,&aj,&ad);
		map[ai].push_back(aj);
		maplen[ai].push_back(ad);
		//cout<<ai<<" "<<aj<<" "<<ad<<endl;
	}
	dijkstra(1);
	for(i=2;i<=n;i++)
	{
		cout<<dist[i]<<endl;
	}
	return 0;
}


“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

ZZB博客

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值