字符串匹配之KMP---全力解析

本文详细解析了KMP算法的核心概念、next数组的计算过程,并提供了算法的实现代码及实例分析。通过实例展示了如何高效地进行字符串匹配,特别适用于解决实际问题中的模式查找任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近日,一同学面试被问到字符串匹配算法,结果由于他使用了暴力法,直接就跪了。字符串匹配方法大概有:BF(暴力破解法), 简化版的BM,KMP,BM,一般情况下,大家听说最多的应该就是KMP算法了。之前学习过,由于时间间隔比较大,记不太清楚了,今天上网查了下,发现写KMP的文章是不少,但是真正清晰简洁就没有了(july的文章太繁琐),所以自己就研究了一晚上,弄清楚了kmp的计算过程,也就在此分享下。

1. 如果你现在完全不知道KMP是个神马玩意,请先阅读 阮一峰 的《字符串匹配的KMP算法》

KMP算法最难理解的是就是next数组的计算过程,在此分享下我所理解的kmp算法以及next数组的计算过程(如果看前面理论比较头大,可以先看后面例子的计算过程,在回过头来看理论就会释怀):
     1. next数组的计算过程: 
          申明:next数组下标从0算起, 定义next[0]=-1, next[1]=0; 模式串记为T[ ]
          假如求 T中 j+1 位的next[j+1]:
          将其 前一位(模式字符)的内容与其前一位的next值(next[j])的内容(T[next[j]])进行比较:
               如果它们相等(T[j]==T[next[j]]),则next[j+1] = next[j]+1;
               如果他们不相等,则继续向前寻找,直到找到next值对应的内容与前一位相等为止,则在这个next值上加一;
               如果直到第一位都没有与之相等,则next[j+1] = 0;           
           例: 有模式串 "abaababc"
          j=0时,next[0] = -1 ; j=1时,next[1] = 0;
          j=2时,t1!=t0, k=next[0]=-1, next[2]=0;
          j=3时,t2==t0, next[3] = next[2]+1 = 1;
          j=4时,k=next[3]=1, t3!=T[1], k=next[1]=0, T[3]==T[0], next[4]=next[1]+1 = 1;
          j=5时,k=next[4]=1, T[4]==T[1], next[5]=next[4]+1=2;
          j=6时,k=next[5]=2, T[5]==T[2], next[6]=next[5]+1=3;
          j=7时,k=next[6]=3, T[6]!=T[3], k=next[3]=1, T[6]==T[1], next[7]=next[3]+1 = 2;

      
     2. 上述算法的实现:
[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. void calNext(const char *T, int *next){  
  2.      int n = strlen(T);  
  3.      next[0] = -1;  
  4.      next[1] = 0;  
  5.      int j=0, k=-1;  
  6.      while(j<n){  
  7.           if(k==-1 || T[j]==T[k]){  
  8.                ++j;  
  9.                ++k;  
  10.                next[j] = k;  
  11.           }  
  12.           else  k = next[k];  
  13.      }  
  14. }  
     3. KMP主算法:
          设置比较起始下标: i=0, j=0;
          循环直到 i+m>=n 或者 T中所有字符都以比较完毕
               a. 如果 S[i]==T[j], 则继续比较S和T的下一个字符; 否则
               b. 将 j=next[j], 从这位置开始继续进行比较;
               c. 如果j==-1, 则将 i 和 j 分别加1, 继续比较;
          如果T中所有字符均比较完毕,则返回匹配的起始下标,否则返回-1;
     4. KMP算法实现:
[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. int kmpmatch(const char *S, const char *T){  
  2.      if(S==NULL || T==NULL) return -1;  
  3.      int n = strlen(S);  
  4.      int m = strlen(T);  
  5.      int next[m];  
  6.      calNext(T, next);  
  7.      int i=0, j=0;  
  8.      while( i+m<n){  
  9.           int k=i;  
  10.           for( ; j<m&&i+m<n&&S[i]==T[j]; ++i, ++j) ;  
  11.           if(j==m) return k;  
  12.           j = next[j];  
  13.           if(j==-1){  
  14.                ++i;  
  15.                ++j;  
  16.           }  
  17.      }  
  18.      return -1;  
  19. }  
举例: 设主串 S="ababcabcacbab", 模式 T="abcac"
          按照上述方法计算得next[]={-1,0,0,0,1}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值