pytorch学习笔记(1)—基本类型、运算和简单模型

标签: python 框架
5人阅读 评论(0) 收藏 举报
分类:

pytorch学习

这篇文章主要讲pytorch框架的学习笔记

1.基本数据类型和基本运算

1.1 张量

python导入pytorch为:
import torch
在torch中,常量通常表示成张量的类型(Tensor),与numpy中的array类似。创建一个5行3列的随机初始化张量矩阵为:

x = torch.Tensor(5, 3)

创建5行3列的[0,1]均匀分布的张量矩阵

x = torch.rand(5, 3)

创建5行3列的[-1,1]高斯分布的张量矩阵

x = torch.randn(5, 3)

张量的大小,返回的是个tuple类型的数据

print x.size()

1.2 基本运算

可以直接用运算符,也可以直接用函数,如计算x+y

y=torch.rand(5.3)
z=x+y
#或者
z=torch.Tensor(5,3)
torch.add(x,y,out=z)

改变自身值的运算,需要在函数后加_,如自加

y.add_(x)

此外,Tensor类型数据具有numpy类型数据的100种操作详情见这里

1.3 与numpy互相转换

Tensor->numpy

a = torch.ones(5)
b = a.numpy()

numpy->Tensor

a=np.ones(5)
b=torch.from_numpy(a)

1.4 变量Variable

相当于tensorflow中的placeholder,由autograd包引入,这个包可以计算所有Tensor的梯度信息,定义好变量后,用backward()就可以自动计算梯度

变量

data是变量的初始值,grad是梯度值,grad_fn是计算梯度的函数,例:定义一个[2,2]的变量,初始值为1,并包含梯度

import torch
from torch.autograd import Variable
x = Variable(torch.ones(2, 2), requires_grad=True)

定义一个计算来求x在1的梯度,令

z=3(x+2)^2

z=3*pow(x+2,2)
out=mean(z)
out.backward()
print x.grad()

1.5 一个简单的CNN

我们以手写体识别的LeNet为例,说明pytorch写神经网络结构的框架,神经网络的有关运算有nn引入,相关函数由nn.functional引入:

import torch.nn as nn
import torch.nn.functional as F

LeNet如下所示:

pytorch中每个模型都看成一个类,接收的输入是nn.Module.

**首先定义**LeNet,一个完整的模型定义如下:

class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net=Net()

包括类的构造函数和前向计算,构造函数就是自己定义的一些运算层,参数是随机初始化的,前向计算则是层之间的运算,反向传播相关运算则是模型自动定义。注意到的是,输入到模型中做前向计算的一定是一个Variable

其次利用定义好的网络做一次前向计算

input = Variable(torch.randn(1, 1, 32, 32))
out = net(input)
print(out)

接着初始化网络中所有参数的梯度,然后用随机的梯度做一次反向传播

net.zero_grad()
out.backward(torch.randn(1, 10))

神经网络的参数是要用训练数据去训练的,这就需要定义loss funtion,pytorch中的nn模块内定义了各种loss function
,torch中的loss function 包含输出和目标值。手写体字符有10个元素,我们就用1-10来表示,定义loss如下:

output = net(input)
target = Variable(torch.arange(1, 11))  # a dummy target, for example
target = target.view(1, -1)  # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)

利用loss做一次反向传播就可以求出所有参数的梯度值,一般在计算定义loss后,先初始化所有参数的梯度值,再更新梯度。我们知道,梯度下降法只是求解优化问题中的参数的一种方法。其他方法还有Adam, RMSProp等。

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update

1.6 简单的分类网络架构

一个完整的分类网络包括:读取数据→展示数据样例→定义网络结构→定义loss和优化方法→训练网络→测试网络。以CIFAR10为例
读取数据

import torch
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

展示数据样例

import matplotlib.pyplot as plt
import numpy as np

# functions to show an image


def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))


# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

定义网络结构以类的形式定义包括架构和前向计算

from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

查看模型信息
有时候想要查看模型的信息,并打印出某些层的参数(weights,bias),可以用以下语句:

params=net.state_dict()
for k,v in params.items():
    print(k) #打印网络中的变量名
    print(params['conv1.weight']) #打印conv1的weight
    print(params['conv1.bias']) #打印conv1的bias

定义loss函数和优化方法

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

训练网络

for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs
        inputs, labels = data

        # wrap them in Variable
        inputs, labels = Variable(inputs), Variable(labels)

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.data[0]
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

测试网络

dataiter = iter(testloader)
images, labels = dataiter.next()

# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
outputs = net(Variable(images))
# 预测
_, predicted = torch.max(outputs.data, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                              for j in range(4)))
查看评论

【欣赏】pytorch的代码太简洁了!!!

pytorch的代码太简洁了
  • DuinoDu
  • DuinoDu
  • 2017-08-19 11:48:15
  • 580

莫烦PyTorch学习笔记(五)——模型的存取

本文主要是介绍如何对训练好的神经网络模型进行存取。 编辑器:spyder1.快速搭建神经网络这里采用上一节介绍的方法快速搭建一个小的神经网络:def save(): # save net1 ...
  • manong_wxd
  • manong_wxd
  • 2017-11-21 15:14:48
  • 315

pytorch resnet 152 模型参数数据

  • 2017年12月29日 14:47
  • 230.34MB
  • 下载

pytorch resnet 101 模型参数数据

  • 2017年12月29日 14:46
  • 170.45MB
  • 下载

PyTorch快速搭建神经网络及其保存提取方法

一、PyTorch快速搭建神经网络方法 先看实验代码: import torch import torch.nn.functional as F # 方法1,通过定义一个Net类来建立神经网络 c...
  • marsjhao
  • marsjhao
  • 2017-05-14 18:25:57
  • 6246

(继)pytorch中的pretrain模型网络结构修改

继上篇文章提出的两种预训练模型的修改方法外,今天在这里推荐我新学习到的一种方法: 这里还是以resnet模型为参考,在去掉预训练resnet模型的后两层(fc层和pooling层)后,新添加一个反卷...
  • whut_ldz
  • whut_ldz
  • 2017-12-22 16:52:44
  • 527

浅谈将Pytorch模型从CPU转换成GPU

最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言大家知道,在...
  • qq_28444159
  • qq_28444159
  • 2017-12-12 13:42:06
  • 1978

PyTorch学习之路(level1)——训练一个图像分类模型

这是一个适合PyTorch入门者看的博客。PyTorch的文档质量比较高,入门较为容易,这篇博客选取官方链接里面的例子,介绍如何用PyTorch训练一个ResNet模型用于图像分类,代码逻辑非常清晰,...
  • u014380165
  • u014380165
  • 2017-11-13 21:55:35
  • 3474

PyTorch(三)——使用训练好的模型测试自己图片

PyTorch的学习和使用(三) 在上一篇文章中实现了如何增加一个自定义的Loss,以Siamese network为例。现在实现使用训练好的该网络对自己手写的数字图片进行测试。...
  • u011276025
  • u011276025
  • 2017-05-31 09:24:49
  • 3835

pytorch 模型的加载

刚开始用pytorch不就,记录一些遇到的问题pytorch模型保存方式一:保存网络结构信息和模型参数信息,保存cnn,命名为“autoencoder.pkl”torch.save(cnn,'auto...
  • zzw000000
  • zzw000000
  • 2017-09-12 18:25:14
  • 704
    个人资料
    等级:
    访问量: 1万+
    积分: 309
    排名: 25万+
    最新评论