• Deep Learning Algorithms for Bearing Fault Diagnostics – A Comprehensive Review
  • Lei Y, Yang B, Jiang X, et al. Applications of machine learning to machine fault diagnosis: A review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587.
  • Jiao J, Zhao M, Lin J, et al. A comprehensive review on convolutional neural network in machine fault diagnosis[J]. arXiv preprint arXiv:2002.07605, 2020.
  • Kumar A , Gandhi C P , Zhou Y , et al. Latest developments in gear defect diagnosis and prognosis: A review[J]. Measurement, 2020, 158:107735.


  • Zhao R, Yan R, Chen Z, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237.
  • Hoang D T, Kang H J. A survey on Deep Learning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335: 327-335.


  • Khan S , Yairi T . A review on the application of deep learning in system health[J]. Mechanical Systems & Signal Processing, 2018, 107(JUL.):241-265.
  • Liu R, Yang B, Zio E, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47.
  • Wang J, Ma Y, Zhang L, et al. Deep learning for smart manufacturing: Methods and applications[J]. Journal of Manufacturing Systems, 2018, 48: 144-156.
  • Sharp M, Ak R, Hedberg Jr T. A survey of the advancing use and development of machine learning in smart manufacturing[J]. Journal of manufacturing systems, 2018, 48: 170-179.


  • Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100-131.
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页