- 博客(260)
- 资源 (9)
- 收藏
- 关注
原创 【编码规范】ASN.1详解:从概念到C++实现解析
本文详细介绍了ASN.1(抽象语法记法一)的概念、数据类型分类、编码规则家族及其核心编码方式,并通过C++代码实现了对ASN.1字符串的解析与输出。内容涵盖其应用场景如X.509证书和SNMP协议,以及BER、DER、PER等不同编码规则的特点与使用。
2025-06-12 10:43:15
449
原创 【MCP实践】Python构建MCP应用全攻略:从入门到实战
本文详解基于Python的FastMCP服务开发框架,其通过工具(Tool)、提示(Prompt)、资源(Resource)三大核心组件构建智能应用生态。工具模块通过@mcp.tool()装饰器注册业务逻辑单元,实现API对接与数据处理;提示模块借助@mcp.prompt()创建结构化指令模板,精准引导大语言模型输出;资源模块利用@mcp.resource()整合静态配置与动态数据流。三者在Cherry Studio开发环境中无缝协同:资源提供数据支撑,提示生成AI指令,工具执行具体操作
2025-06-06 14:15:32
977
原创 【Python指南】离线安装顽固复杂的第三方库指南
本文提供了一种跨平台离线打包Python依赖包 的完整解决方案,适用于在无网络连接的Linux(aarch64架构)服务器上部署Python应用。
2025-06-04 17:29:13
804
原创 【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
AiCoder是专为Notepad++设计的AI辅助插件,支持嵌入式提问(选中文本分析优化)、对话式提问及自定义提示词模板。需Windows 7+/Notepad++ v7.9以上版本,安装时需下载对应脚本并配置API密钥(推荐无问芯穹平台)。功能包括代码解读、优化、注释及侧边栏对话,通过快捷键或菜单操作。配置需编辑config.json文件,提供常见问题解答如安装失败处理、API错误代码解析,但不支持快捷键修改。需联网使用,无代码自动补全功能,技术支持可通过邮件反馈。
2025-04-25 16:06:21
1215
原创 【AI插件开发】Notepad++ AI插件开发实践:支持配置界面
本文介绍了为Notepad++ AI插件开发图形化配置界面的实现过程。通过Windows原生API创建对话框资源,构建包含平台选择、模型管理、接口参数配置的交互界面,采用动态控件初始化、双向数据同步机制实现JSON配置与界面元素的实时映射,支持通过模态对话框编辑字段参数。最终实现无需手动修改JSON文件,通过可视化操作完成SSL设置、授权认证、API端点等配置的增删改查,显著提升插件易用性。
2025-04-18 23:09:19
1477
原创 【AI插件开发】Notepad++ AI插件开发实践:实现对话窗口功能
本文介绍了Notepad++插件中AI对话窗口的核心功能实现,包括动态模型切换、异步调用与实时输出。通过子类化输入框实现`Ctrl+Enter`提交与换行控制,利用原子变量`g_bRun`管理后台任务状态,按钮图标随发送/停止状态动态切换。模型输出采用流式回调机制,通过`RunUiTask`确保线程安全,并将UTF-8结果转为本地编码显示。界面实时追加问答内容,禁用编辑区域保障操作一致性。
2025-04-17 17:32:10
1113
原创 【AI插件开发】Notepad++ AI插件开发实践:支持多平台多模型
本博客详细介绍了Notepad++插件的扩展设计,重点实现多平台、多模型及认证体系三大核心能力。通过配置文件动态切换平台,采用分层架构抽象出多种认证方式(Basic/Bearer/ApiKey等),通过策略模式统一处理授权头生成,确保安全性与扩展性。模型管理模块支持手动配置与自动发现双模式,预留models_endpoint接口为动态模型同步奠定基础。
2025-04-16 20:27:28
882
原创 【加密算法】SM2密钥生成与转换详解:从原理到代码实现
本篇在此前SM2源码的基础上,实现SM2密钥生成等相关操作。在国密算法体系中,SM2是基于椭圆曲线密码(ECC)的非对称加密算法,广泛应用于数字签名、密钥交换等领域。在前文中,我们实现了SM2的加解密、签名与验签功能,但缺少密钥生成模块。本文将深入探讨SM2密钥的生成原理,并提供完整的C++实现代码,涵盖密钥生成公私钥转换和十六进制编码等核心功能。本文完善了SM2算法的密钥管理模块,通过底层椭圆曲线运算实现了密钥生成、转换和推导功能。这些函数为构建完整的SM2应用(如数字证书、安全通信)奠定了基础。
2025-04-15 17:35:01
1399
2
原创 【加密算法】SM2签名本地验证成功,为啥对方判定非法?——深入解析SM2签名格式兼容性问题
SM2签名验证失败的根源往往在于编码细节的疏忽或参数处理的差异。ASN.1 DER编码规则,特别是补零场景。公钥与用户ID的标准化表示。严格的验签流程检查(如范围、哈希算法)。签名约定,如编码或长度约定通过工具验证和日志调试,可快速定位问题,确保跨系统兼容性。
2025-04-14 22:10:03
1018
原创 【加密算法】SM2国密算法原理、C++跨平台实现(含完整代码和示例)
本文围绕SM2算法展开,系统介绍了其技术原理与实现方法。首先,从算法基础入手,概述了SM2的核心数学原理、关键参数及组件构成。接着,深入解析了数字签名、加密解密流程以及密钥交换协议,并探讨了椭圆曲线数学优化技术,展示了SM2在性能与安全性上的优势。安全性分析部分则从算法设计、抗攻击能力及与RSA/AES的对比入手,全面评估了SM2的安全性。最后,通过C++跨平台自实现(Header-Only)展示了源码封装、单元测试及输出结果,为开发者提供了实用参考。本文旨在为SM2算法的理论研究与工程实践提供清晰指导。
2025-04-11 16:21:55
1874
7
原创 【AI模型核心流程】(二)大模型输入处理的完整流程:从基础特征到深层优化
大语言模型的输入处理远不止分词、编码和嵌入三步,其核心在于通过层级化特征抽象构建高效语义表征。基础阶段利用子词算法分割文本,结合位置编码和动态嵌入生成数值化表示;深层优化则依赖多层Transformer编码器,通过自注意力机制捕捉长距离依赖,结合残差连接、层归一化等技术实现上下文敏感的高阶语义建模。模型在千字级文本中动态关联知识库与上下文,解决多模态融合和长序列计算等挑战。输入处理作为大模型的“感知中枢”,其技术栈直接决定模型的语义推理与生成能力,是突破静态语义局限的关键。
2025-04-10 19:39:44
873
原创 【加密算法】SM4国密算法原理、C++跨平台实现(含完整代码和示例)
本文系统阐述了SM4国密算法的技术体系与工程实践。通过分组密码基础理论建立算法框架,明确其128位分组/密钥长度及32轮迭代结构。在原理层面,重点解析轮函数中复合域S盒的非线性变换机制,并对比ECB/CBC工作模式的适用场景。安全性分析从差分攻击概率到侧信道防御方法,论证算法合规性,并通过性能数据揭示与AES的差异。最终以CBC模式源码实现收尾,提供Header-Only库设计与单元测试验证方案,为开发者提供完整技术参考。
2025-04-07 17:26:44
2492
原创 【AI模型核心流程】(一)大语言模型输入处理机制详解与常见误解辨析
大语言模型处理用户输入的核心流程包含预处理、子词算法分词、词汇表映射ID、嵌入层向量转换及Transformer编码生成响应。常见误解包括:1)误将分词视为简单按字分割,实际采用BPE等动态子词算法;2)误认为向量化需外部查询,实为模型内置嵌入矩阵运算;3)混淆token化与向量化为同一阶段,实为离散符号到连续空间的分步映射。理解这些机制对优化模型应用、规避幻觉风险具有关键作用。
2025-04-04 21:03:46
910
原创 【C++】nlohmann::json 配置加载技术实践:从基础到高级应用
本文系统解析了C++中nlohmann::json库的配置加载技术,涵盖其核心特性(header-only、类型安全、STL兼容),对比了优缺点及适用场景(配置管理、API交互)。通过代码示例演示JSON创建、解析、遍历等操作,并提出基于模板函数的通用配置加载方案,支持嵌套结构处理。针对高级用法,详细解释NLOHMANN_DEFINE_TYPE_INTRUSIVE宏的序列化机制及约束条件。最后结合Mermaid和PlantUML实现技术文档可视化,提供流程图、时序图、类图等实现方案,提升配置系统的可维护性。
2025-04-03 23:24:31
1374
原创 【AI插件开发】Notepad++ AI插件开发实践(代码篇):从Dock窗口集成到功能菜单实现
上篇文章已经在Notepad++的插件开发中集成了`选中即问AI`的功能,这一篇文章将在此基础上进一步集成,支持`AI对话窗口`以及常见的代码功能菜单: - 显示AI的Dock窗口,可以用自然语言向 AI 提问或要求执行任务 - 选中代码后使用,AI 会详细解释代码功能 - 需要 AI 帮助改进或修复代码时使用 - 自动生成代码注释 - 选中即问,直接把选中内容丢给AI - 参数设置,基于插件配置切换AI平台等参数,提供对话框设置及调整平台参数
2025-04-02 20:39:25
817
原创 【AI插件开发】Notepad++ AI插件开发实践:从Dock窗口集成到功能菜单实现
本文详细阐述了Notepad++ AI插件的开发实践,重点解决了Dock窗口集成与核心功能菜单的实现难题。通过裁剪Notepad++源码,剥离窗口管理核心模块并重构暗色主题依赖,成功构建轻量化的AI交互界面。基于`DockingDlgInterface`设计支持富文本的对话窗口,实现代码解释、智能优化、注释生成等核心功能,并通过动态菜单注册机制绑定快捷键。文章深入解析了窗口单例模式、DPI自适应布局、线程安全通信等关键技术,展示了插件菜单与AI交互窗口的实际效果,为开发智能化代码辅助工具提供了完整的实现路径
2025-04-01 12:09:34
1107
原创 【AI深度学习网络】DeepSeek的Transformer改进与优化技术:从自注意力机制到多模态突破
本文系统解析了Transformer架构的核心原理、技术演进及应用实践,Transformer凭借自注意力机制、位置编码和多头注意力等创新,解决了传统RNN的长程依赖问题,支持并行计算,成为NLP和CV领域的基石。详述了DeepSeek等模型的优化策略,包括混合专家系统(MoE)、分层注意力和Flash Attention 2等技术,显著提升长序列处理效率。通过代码示例,演示了简化版Transformer的实现,同时探讨了模型面临的计算成本、数据依赖等挑战,并展望了Time-LLM、多模态统一模型等前沿方向
2025-03-31 21:02:07
1713
原创 【Ai插件开发】Notepad++ AI插件开发进阶(代码篇):集成Ai模型问答功能与流式交互实现
本文系统阐述了Notepad++插件开发与AI集成的关键技术路径。基于Scintilla控件交互优化,通过ScintillaCall接口替代传统SendMessage实现类型安全的编辑器操作,解决了参数转换繁琐与接口文档依赖问题。创新性地构建流式响应处理管道,采用生产者-消费者模式实现AI模型的异步交互,支持Chunk数据解析与打字机动画渲染,有效处理长文本分段与编码转换(GBK/UTF-8自适应)。工程实践包含多线程架构设计、JSON配置管理及WinHttp封装应用,最终实现选中内容智能问答功能。后续将拓
2025-03-30 06:00:00
677
原创 【Ai插件开发】Notepad++ AI插件开发进阶:集成Ai模型问答功能与流式交互实现
本文系统阐述了Notepad++插件开发与AI集成的关键技术路径。基于Scintilla控件交互优化,通过ScintillaCall接口替代传统SendMessage实现类型安全的编辑器操作,解决了参数转换繁琐与接口文档依赖问题。创新性地构建流式响应处理管道,采用生产者-消费者模式实现AI模型的异步交互,支持Chunk数据解析与打字机动画渲染,有效处理长文本分段与编码转换(GBK/UTF-8自适应)。工程实践包含多线程架构设计、JSON配置管理及WinHttp封装应用,最终实现选中内容智能问答功能。
2025-03-29 11:27:55
1165
原创 【AI插件开发】Notepad++插件开发实践:从基础交互到ScintillaCall集成
在文本编辑器领域,Notepad++凭借其轻量级特性和强大的插件生态,成为开发者群体中的热门选择。作为基于Scintilla组件构建的编辑器(Scintilla是开源的代码编辑控件,被Notepad++、Geany等知名工具广泛采用),其插件开发体系具有独特的技术特点。本文是AI辅助开发系列的第二篇,前序文章已实现通过WinHttp封装C++访问大模型的SDK。本篇将聚焦于构建Notepad++插件开发框架,重点解决以下技术要点:本文重点讲解插件开发的核心技术路径,重点攻克Scintilla控件交互的工程化
2025-03-28 19:41:14
1487
原创 【C++接入大模型】WinHTTP类封装:实现对话式大模型接口访问
本博客详细解析了基于WinHTTP封装的C++ HTTP客户端类SimpleHttp的设计与实现。该类支持同步/异步请求及流式数据处理,核心功能包括:1)通过WinHTTP API实现HTTP/HTTPS通信,自动处理SSL加密;2)采用多线程技术分离数据接收与主线程,通过线程安全队列实现流式响应缓存;3)提供简洁接口封装GET/POST请求,支持自定义请求头与JSON参数;4)异常处理机制覆盖网络错误、HTTP状态码校验及资源释放。特别针对流式场景设计了TryFetchResp轮询接口
2025-03-27 18:49:16
954
原创 【基础库】Windows环境下OpenSSL安装与集成指南:源码编译与安装包方案解析及对比
OpenSSL作为网络安全领域的基石库,其Windows环境下的部署方案直接影响开发效率与程序性能。本文将系统性探讨源码编译与安装包部署两种方案的技术细节,通过参数对比与场景分析,为开发者提供完整的决策框架,并重点解析Visual Studio 2019环境下的集成方法。
2025-03-26 11:13:08
1100
原创 【AI协议】MCP协议:重塑AI与数据交互的新范式
MCP核心设计目标是建立一个类似USB-C的标准化接口,实现AI应用与外部资源的无缝互联,真正做到“一次集成,处处运行”。MCP(Model Context Protocol,模型上下文协议)是专为人工智能时代设计的开放标准协议,其核心目标在于解决AI应用与多源数据之间的“数据孤岛”问题。在这个“软件吞噬世界,AI吞噬软件”的时代,MCP或许正在孕育下一代AI原生应用的基础设施。这种标准化描述使AI模型能动态理解工具的能力边界,结合实时返回的结果数据(如CSV表格或API响应),形成闭环学习机制。
2025-03-25 09:57:06
824
原创 【AI神经网络】深度神经网络(DNN)技术解析:从原理到实践
深度神经网络(Deep Neural Network, DNN)作为人工智能领域的核心技术,近年来在计算机视觉、自然语言处理、医疗诊断等领域取得了突破性进展。与传统机器学习模型相比,DNN通过多层非线性变换自动提取数据特征,解决了复杂模式识别的难题。本文将深入探讨DNN的定义、核心原理、在自然语言处理中的应用,并通过代码示例展示其实际部署方法。
2025-03-24 09:27:08
2340
2
原创 【AI部署】Ollama与vLLM深度对比:大模型部署框架的技术演进与实践指南
在人工智能技术快速发展的当下,大语言模型(LLM)的本地化部署与生产级应用已成为开发者关注的焦点。Ollama和vLLM作为两大主流框架,分别代表了轻量化部署与高性能推理的技术路线。本文将从技术架构、性能指标、适用场景等维度展开系统性对比,为开发者提供框架选型与落地实践的全面参考。
2025-03-23 21:39:28
1416
原创 【工具】从pip到uv:Python开发者的极速工具迁移指南
本文介绍了新一代Python包管理工具uv的核心优势与迁移实践。uv通过Rust原生性能优化,实现依赖解析速度提升10-100倍,并集成虚拟环境管理、多版本Python切换等功能。文中详细演示了Windows环境下的完整工作流以及实践过程中的踩坑问题。通过uv venv创建虚拟环境时支持版本指定,依赖安装速度较pip显著提升。总结了常见问题解决方案,包括网络代理配置、手动下载安装包等实用技巧,为开发者从pip迁移至uv提供了完整指南。
2025-03-20 17:37:55
1519
原创 【AI模型】深度解析:DeepSeek的联网搜索的实现原理与认知误区
在实时信息处理成为大模型核心竞争力的今天,DeepSeek的联网搜索功能通过独特的"动态知识增强"架构,实现了对互联网实时信息的精准掌控。这个过程就像我们写论文,先在网上查资料,然后把有用的素材整合起来,再发挥自己的思考能力,写出一篇有深度的文章。大模型们也是这样,靠着这个“小助手”,它们能获取到最新的信息,给用户更全面、更准确的答案。总之,大模型们的“联网魔法”其实是个团队合作的成果。随着多模态大模型的发展,未来的联网搜索将实现更智能的跨媒体理解能力,使AI真正成为连接人类与实时数字世界的桥梁。
2025-03-19 09:54:33
4412
原创 【Linux编程】IPC之消息队列从踩坑到实战:核心原理、实战案例与C++封装详解(含完整代码)
本文详细介绍了Linux系统中消息队列的使用方法,包括核心函数解析(msgget、msgsnd、msgrcv、msgctl)和常见踩坑点,并通过生产者-消费者案例展示了其实战应用。进一步封装了一个通用的C++模板类MessageQueue,提供消息创建、发送、接收、删除和状态查询功能,具备类型安全、异常处理和资源管理特性。文章还探讨了性能优化建议和调试工具,适合需要进程间通信的开发者参考。
2025-03-18 21:06:48
973
原创 【工具】C#防沉迷进程监控工具使用手册
本工具用于监控指定进程的运行时长,当达到预设时间时通过声音、弹窗、窗口抖动等方式进行提醒,帮助用户合理控制程序使用时间。软件在上篇文章。声音提醒:将WAV格式文件放入程序目录或设置系统自带的音效,配置soundAlert参数弹窗提醒:设置showMessageBox="true"并填写messageBoxText窗口抖动:默认启用,可通过移除禁用。
2025-03-17 16:57:59
806
原创 【工具】C#游戏防沉迷小工具
嘿,各位小伙伴!今天想跟大家唠唠我为啥要搞这么个防沉迷小工具。咱都清楚,现在这游戏啊,玩起来那叫一个带劲,但时间一长,不仅眼睛累,心也跟着累。有些游戏,规则定得挺有意思:要是玩超过 15 分钟,你就可以秒退了,系统不会给你什么惩罚。这不,我就寻思着,要是有个东西能帮咱盯着游戏开始的时间,到时候提醒咱一声,那该多好啊!我可以根据当前局势判断要不要退出,要是碰到开挂的、花钱的,那果断推出,不能苦了自己舒服了别人。于是,我就琢磨着做这么个防沉迷小工具。
2025-03-14 19:23:33
904
1
原创 【RAG文档处理】文档加载模块:连接数据与智能应用的桥梁
文章系统介绍了LangChain框架下的文档加载模块,涵盖安装导入、基本用法、支持格式、高级技巧、注意事项及通用加载器。强调其在人工智能应用中将非结构化数据转化为机器可理解格式的关键作用,对比了CSVLoader和UnstructuredCSVLoader的特性、适用场景及性能,为不同需求下选择合适加载器提供指导。
2025-03-13 17:39:02
706
原创 【AI模型】Embedding(嵌入)模型:解锁机器理解人类语言的密钥
本文深入探讨了Embedding模型,它是将文字、句子等转化为计算机可理解数字(向量)的技术,能捕捉文字的含义和关联,是现代语言AI的底层基石。文章分析了传统文本表示方法的局限性,阐述了Embedding模型的解决方案、核心原理、常见类型、应用场景及选择方法等。通过示例代码展示了句子语义相似性检测,并给出了运行结果及分析,指出Embedding模型推动了NLP从规则驱动到数据驱动的转变,未来将在更多领域发挥重要作用。
2025-03-12 18:33:17
1390
原创 【AI基础】从零开始:Chroma向量数据库构建高效AI应用全攻略
文章主要介绍了Chroma向量数据库,涵盖其简介、安装部署、核心概念、高级功能及应用场景。Chroma作为开源AI原生向量数据库,通过将非结构化数据转换为向量嵌入,实现高效检索,适用于语义搜索、推荐系统等场景。安装部署包括本地安装、Docker部署及客户端连接配置。核心概念包括数据建模、存储架构、索引机制等。高级功能涉及数据预处理、性能优化、持久化存储等。应用场景广泛,包括推荐系统、语义搜索、大模型增强等。
2025-03-11 17:19:03
1404
原创 【AI智能体报告】开源AI助手的革命:OpenManus深度使用报告
2025年3月,MetaGPT团队用一场"开源闪电战"改写了AI Agent的竞争格局。面对商业产品Manus高达10万元的邀请码炒作,他们仅用3小时便推出开源替代品OpenManus,首日即登顶GitHub趋势榜。作为首批体验者,我在本地环境完成了部署并深度测试了其核心功能。本文将全面解析这款工具的技术特性、部署技巧、实战场景,并分享普通用户最关心的隐私安全、成本效益与学习曲线问题。
2025-03-10 20:06:37
1933
原创 【AI深度学习网络】Transformer时代,RNN(循环神经网络)为何仍是时序建模的“秘密武器”?
循环神经网络(RNN)是一种处理序列数据的深度学习模型,具有记忆能力,能捕捉序列中的时间依赖关系。其核心在于循环结构和隐藏状态,通过时间展开处理序列数据。RNN在自然语言处理、时间序列分析、语音处理、视频分析等领域有广泛应用,但存在梯度消失/爆炸、计算效率低等局限性。LSTM和GRU是其优化变体,通过门控机制改善记忆能力。在短序列任务和需要时序建模的领域,RNN仍具优势。
2025-03-09 07:00:00
881
原创 【创意代码】用Python为她定制粉色公主风妇女节贺卡:代码与浪漫的完美融合
这个项目将Python的简洁优雅与浪漫创意相结合,证明代码不仅是解决问题的工具,更是传递情感的媒介。当科技遇见温情,简单的循环语句也能编织出爱的密语。建议将生成的贺卡打印在烫金卡纸上,搭配手写情书,打造专属的仪式感。
2025-03-08 08:00:00
590
原创 【AI深度学习网络】前馈神经网络(FNN)及其变体(CNN)解析
前馈神经网络(Feedforward Neural Network)是最基础的神经网络类型,其核心特征是信息单向流动,即数据从输入层经隐藏层传递至输出层,无循环或反馈连接。典型结构包括输入层隐藏层和输出层。输入层接收原始数据,如像素值;隐藏层通过加权求和和非线性变换提取特征;输出层生成最终预测结果,如分类概率。FNN结构图:单层前馈网络仅含输入层和输出层,适用于简单线性分类。例如感知机(Perceptron),通过权重直接映射输入到输出。多层前馈网络包含多个隐藏层,可逼近任意复杂函数。
2025-03-07 13:28:19
1226
原创 【AI深度学习基础】PyTorch初探
通过本阶段的学习,我们了解了PyTorch的基本概念和核心特性,掌握了张量的基本操作和神经网络的构建方法,并通过一个简单的线性回归示例进行了实践。PyTorch的灵活性和强大功能为我们后续深入学习深度学习奠定了基础。PyTorch是一个非常强大且易于使用的深度学习框架,适合初学者入门和开发者进行各种深度学习项目。希望本篇学习指南能够帮助你迈出PyTorch学习的第一步,期待你在后续的学习和实践中不断探索,利用PyTorch构建出更加优秀的模型。
2025-03-06 10:41:53
2076
原创 【AI深度学习网络】卷积神经网络(CNN)入门指南:从生物启发的原理到现代架构演进
本文介绍了卷积神经网络(CNN)的核心原理与应用。从基础概念入手,详细讲解了CNN的生物基础、数学本质、核心原理以及为何特别适合图像处理。通过层次化特征提取和参数共享等机制,CNN能够高效地处理图像数据,自动学习特征,无需人工设计。文章还列举了CNN在图像分类、目标检测、图像分割和风格迁移等领域的典型应用,展示了其在深度学习中的重要地位。
2025-03-05 16:38:12
1863
原创 【AI实践】基于TensorFlow/Keras的CNN(卷积神经网络)简单实现:手写数字识别的工程实践
本实现仅用35行核心代码完成端到端的CNN训练与验证,准确率达98%+。通过模块化设计、日志增强和可视化组件,展现了工业级代码的雏形。读者可在此基础上扩展更复杂的网络结构或部署功能。
2025-03-05 13:26:28
1301
【hust】nmap使用练习
2015-04-27
使用ffmpeg转码pcm至aac格式
2015-01-23
12306.image.model+model+label.zip
2020-01-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人