Adaboost算法解释

(3)Adaboost算法解释:
   AdaBoost算法是模型为加法模型、损失函数为指数函数、学习算法为前向分布算法时的二类分类学习方法。
   (i)前向分布算法
    考虑加法模型
   f ( x ) = ∑ m = 1 M β m b ( x ; γ m ) f(x)=\sum_{m=1}^{M} \beta_{m} b\left(x ; \gamma_{m}\right) f(x)=m=1Mβmb(x;γm)
       其中,基函数: b ( x ; γ m ) , b\left(x ; \gamma_{m}\right), b(x;γm)基函数参数: γ m \gamma_{m} γm,基函数的系数: β m \beta_{m} βm
    在给定训练数据集及损失函数 L ( y , f ( x ) ) \mathrm{L}(\mathrm{y}, \mathrm{f}(\mathrm{x})) L(y,f(x))的条件下,学习加法模型f(x)成为经验风险最小化即损失函数最小化问题:
   min ⁡ β m , γ m ∑ i = 1 N L ( y i , ∑ m = 1 M β m b ( x i ; γ m ) ) \min _{\beta_{m}, \gamma_{m}} \sum_{i=1}^{N} L\left(y_{i}, \sum_{m=1}^{M} \beta_{m} b\left(x_{i} ; \gamma_{m}\right)\right) βm,γmmini=1NL(yi,m=1Mβmb(xi;γm))
    算法简化,如果能够从前向后,每一步只学习一个基函数及其系数,逐步逼近上式,及每步只优化损失函数: min ⁡ β , γ ∑ i = 1 N L ( y i , β b ( x i ; γ ) ) \min _{\beta, \gamma} \sum_{i=1}^{N} L\left(y_{i}, \beta b\left(x_{i} ; \gamma\right)\right) minβ,γi=1NL(yi,βb(xi;γ))
    前向分步算法的算法框架
       输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) … ( x N , y N ) } \mathrm{T}=\{(\mathrm{x} 1, \mathrm{y} 1),(\mathrm{x} 2, \mathrm{y} 2) \ldots(\mathrm{xN}, \mathrm{yN})\} T={(x1,y1),(x2,y2)(xN,yN)},损失函数 L ( y , f ( x ) ) \mathrm{L}(\mathrm{y}, \mathrm{f}(\mathrm{x})) L(y,f(x)),基函数集 { b ( x ; γ ) } \{\mathrm{b}(\mathrm{x} ; \gamma)\} {b(x;γ)}
       输出:加法模型 f ( x ) \mathrm{f}(\mathrm{x}) f(x)
       算法步骤:
           初始化 f 0 ( x ) = 0 \mathrm{f}_{0}(\mathrm{x})=0 f0(x)=0
           对于 m = 1 , 2 , … M \mathrm{m}=1,2, \ldots \mathrm{M} m=1,2,M
             极小化损失函数 ( β m , γ m ) = arg ⁡ min ⁡ β , γ ∑ i = 1 N ( y i , f m − 1 ( x i ) + β b ( x i ; γ ) ) \left(\beta_{m}, \gamma_{m}\right)=\arg \min _{\beta, \gamma} \sum_{i=1}^{N}\left(y_{i}, f_{m-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \gamma\right)\right) (βm,γm)=argminβ,γi=1N(yi,fm1(xi)+βb(xi;γ)),得到参数 β m γ m \beta_{m} \gamma_{m} βmγm
             更新当前模型: f m ( x ) = f m − 1 ( x ) + β m b ( x ; γ m ) f_{m}(x)=f_{m-1}(x)+\beta_{m} b\left(x ; \gamma_{m}\right) fm(x)=fm1(x)+βmb(x;γm)
           得到加法模型: f ( x ) = f M ( x ) = ∑ m = 1 M β m b ( x ; γ m ) f(x)=f_{M}(x)=\sum_{m=1}^{M} \beta_{m} b\left(x ; \gamma_{m}\right) f(x)=fM(x)=m=1Mβmb(x;γm)
   (ii)前向分布算法和Adaboost算法
    Adaboost算法是前向分布算法的特例,这时,模型是基本分类器组成的加法模型,损失函数是指数函数。损失函数取 L ( y , f ( x ) ) = exp ⁡ ( − y f ( x ) ) L(y, f(x))=\exp (-y f(x)) L(y,f(x))=exp(yf(x))
    证明:
       假设经过m-1轮迭代,前向分步算法已经得到 f m − 1 ( x ) : f m − 1 ( x ) = f m − 2 ( x ) + α m − 1 G m − 1 ( x ) = α 1 G 1 ( x ) + ⋯ + α m − 1 G m − 1 ( x ) \begin{aligned} \mathrm{f}_{\mathrm{m}-1}(\mathrm{x}): & f_{m-1}(x)=f_{m-2}(x)+\alpha_{m-1} G_{m-1}(x) \\ &=\alpha_{1} G_{1}(x)+\cdots+\alpha_{m-1} G_{m-1}(x) \end{aligned} fm1(x):fm1(x)=fm2(x)+αm1Gm1(x)=α1G1(x)++αm1Gm1(x)
       在第m轮迭代得到 α m , G m ( x ) \alpha_{m}, G_{m}(x) αm,Gm(x) f m ( x ) f_{m}(x) fm(x)
       目标是使前向分布算法得到的 α m , G m ( x ) \alpha_{m}, G_{m}(x) αm,Gm(x) f m ( x ) f_{m}(x) fm(x)在训练数据集上损失最小,即 ( α m , G m ( x ) ) = arg ⁡ min ⁡ α , G ∑ i = 1 N exp ⁡ ( − y i ( f m − 1 ( x i ) + α G ( x i ) ) ) \left(\alpha_{m}, G_{m}(x)\right)=\arg \min _{\alpha, G} \sum_{i=1}^{N} \exp \left(-y_{i}\left(f_{m-1}\left(x_{i}\right)+\alpha G\left(x_{i}\right)\right)\right) (αm,Gm(x))=argα,Gmini=1Nexp(yi(fm1(xi)+αG(xi)))
       进一步:
   ( α m , G m ( x ) ) = arg ⁡ min ⁡ α , G ∑ i = 1 N w ˉ m i exp ⁡ ( − y i α G ( x i ) ) \left(\alpha_{m}, G_{m}(x)\right)=\arg \min _{\alpha, G} \sum_{i=1}^{N} \bar{w}_{m i} \exp \left(-y_{i} \alpha G\left(x_{i}\right)\right) (αm,Gm(x))=argα,Gmini=1Nwˉmiexp(yiαG(xi))
       其中, w ˉ m i = exp ⁡ ( − y i f m − 1 ( x i ) ) \bar{w}_{m i}=\exp \left(-y_{i} f_{m-1}\left(x_{i}\right)\right) wˉmi=exp(yifm1(xi)) w ˉ m i \bar{w}_{mi} wˉmi既不依赖 α \alpha α也不依赖G,但依赖于 f m − 1 ( x ) f_{m-1}(x) fm1(x),所以每轮迭代都会发生变化。
        求基本分类器 G ∗ ( x ) \mathrm{G}^{*}(\mathrm{x}) G(x)
        对于任意的 α > 0 \alpha>0 α>0,是上式最小的G(x)由下式得到:
G m ∗ ( x ) = arg ⁡ min ⁡ G ∑ i = 1 N w ˉ m i I ( y i ≠ G ( x i ) ) G_{m}^{*}(x)=\arg \min _{G} \sum_{i=1}^{N} \bar{w}_{m i} I\left(y_{i} \neq G\left(x_{i}\right)\right) Gm(x)=argGmini=1NwˉmiI(yi=G(xi)),          其中, w ˉ m i = exp ⁡ ( − y i f m − 1 ( x i ) ) \bar{w}_{m i}=\exp \left(-y_{i} f_{m-1}\left(x_{i}\right)\right) wˉmi=exp(yifm1(xi))
        权值计算:
       求权值:
   在这里插入图片描述
       
   在这里插入图片描述
   在这里插入图片描述
   在这里插入图片描述
   在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值