古籍命名实体识别解决方案

1. 了解 GujiRoBERTa_jian_fan 模型

GujiRoBERTa_jian_fan 是基于 RoBERTa 架构的古籍预训练模型,适用于繁体和简体中文,特别针对古汉语文本进行了训练。该模型能够捕捉古汉语的语言特点,为在古籍上进行下游任务(如文本分类、序列标注等)提供良好的基础。


2. 准备数据集

2.1 数据收集

  • 语料来源:收集包含您提到的12类命名实体的古汉语文本,如古籍、医典、史书等。

2.2 数据标注

  • 标注工具:使用标注工具(如标注助手、Doccano 等)对收集的文本进行人工标注。
  • 标注格式:采用 BIO 或 BIOES 等序列标注格式。

示例(BIO格式)

东岳大帝 来到 泰山 ,观赏 五岳 的 风景 。

B-人名 O B-地名 O O B-地名 O B-地名 O O

标签定义:为每个实体类别定义相应的标签,如:

人名:B-PER、I-PER
地名:B-LOC、I-LOC
书名:B-BOOK、I-BOOK
官职:B-TITLE、I-TITLE
国名:B-COUNTRY、I-COUNTRY
时间:B-TIME、I-TIME
中医疾病:B-TCM-DIS、I-TCM-DIS
证候:B-SYNDROME、I-SYNDROME
方剂:B-PRESCRIPTION、I-PRESCRIPTION
饮片:B-HERB、I-HERB
症状:B-SYMPTOM、I-SYMPTOM
腧穴:B-ACUPOINT、I-ACUPOINT

3. 数据预处理

3.1 分词和标记化

  • 使用与模型匹配的分词器进行分词。

  • from transformers import AutoTokenizer
    
    tokenizer = AutoTokenizer.from_pretrained("hsc748NLP/GujiRoBERTa_jian_fan")
    

    3.2 标签编码

  • 将实体标签映射为数字 ID,方便模型训练。

    label_list = ["O", "B-PER", "I-PER", "B-LOC", "I-LOC", "B-BOOK", "I-BOOK", "B-TITLE", "I-TITLE",
                  "B-COUNTRY", "I-COUNTRY", "B-TIME", "I-TIME", "B-TCM-DIS", "I-TCM-DIS",
                  "B-SYNDROME", "I-SYNDROME", "B-PRESCRIPTION", "I-PRESCRIPTION",
                  "B-HERB", "I-HERB", "B-SYMPTOM", "I-SYMPTOM", "B-ACUPOINT", "I-ACUPOINT"]
    
    label_map = {label: idx for idx, label in enumerate(label_list)}
    

    3.3 数据格式转换

  • 将标注数据转换为模型输入格式,包括输入 IDs、注意力掩码、标签等。
  • 4. 模型微调

    4.1 加载预训练模型

使用 Hugging Face Transformers 库加载预训练模型,并指定标签数量。

from transformers import AutoModelForTokenClassification

model = AutoModelForTokenClassification.from_pretrained(
    "hsc748NLP/GujiRoBERTa_jian_fan",
    num_labels=len(label_list)
)

4.2 设置训练参数

  • 定义训练参数,如学习率、批次大小、训练轮次等。

    from transformers import TrainingArguments
    
    training_args = TrainingArguments(
        output_dir='./results',
        num_train_epochs=10,
        per_device_train_batch_size=16,
        per_device_eval_batch_size=16,
        learning_rate=5e-5,
        evaluation_strategy="steps",
        logging_steps=100,
        save_steps=500,
        weight_decay=0.01,
        logging_dir='./logs',
        do_train=True,
        do_eval=True,
    )
    

    4.3 构建数据集

  • 使用 datasets 库或自定义脚本,将数据加载为模型可训练的数据集。

from torch.utils.data import Dataset

class NERDataset(Dataset):
    def __init__(self, texts, labels, tokenizer, label_map):
        self.texts = texts
        self.labels = labels
        self.tokenizer = tokenizer
        self.label_map = label_map

    def __len__(self):
        return len(self.texts)

    def __getitem__(self, idx):
        text = self.texts[idx]
        labels = self.labels[idx]
        # Tokenize text
        encoding = self.tokenizer(
            text,
            is_split_into_words=True,
            return_offsets_mapping=True,
            padding='max_length',
            truncation=True,
            max_length=128,
            return_tensors='pt'
        )
        # Align labels
        # ...(对齐标签的代码)
        return encoding

4.4 定义评估指标

  • 使用 seqeval 库计算实体级别的准确率、召回率和 F1 分数。

    from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score
    
    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)
        true_labels = [[label_list[label] for label in label_seq] for label_seq in labels]
        true_predictions = [[label_list[pred] for pred in pred_seq] for pred_seq in predictions]
    
        precision = precision_score(true_labels, true_predictions)
        recall = recall_score(true_labels, true_predictions)
        f1 = f1_score(true_labels, true_predictions)
        return {
            'precision': precision,
            'recall': recall,
            'f1': f1,
        }
    

    4.5 开始训练

  • 使用 Trainer 类进行训练和评估。

    from transformers import Trainer
    
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        tokenizer=tokenizer,
        compute_metrics=compute_metrics
    )
    
    trainer.train()
    

    5. 模型推理与应用

    5.1 编写预测函数

  • 编写函数对新文本进行实体识别。

    def predict(text):
        tokens = tokenizer.tokenize(text)
        inputs = tokenizer.encode(text, return_tensors="pt")
        outputs = model(inputs).logits
        predictions = torch.argmax(outputs, dim=2)
        predicted_labels = [label_list[prediction] for prediction in predictions[0].numpy()]
        return list(zip(tokens, predicted_labels))
    

    5.2 测试模型

  • 输入示例文本,查看识别结果。

    sentence = "李时珍 著有 《本草纲目》 ,详细记载了多种 中药材 。"
    result = predict(sentence)
    for token, label in result:
        print(f"{token}\t{label}")
    

    输出

    李    B-PER
    时    I-PER
    珍    I-PER
    著    O
    有    O
    《    O
    本    B-BOOK
    草    I-BOOK
    纲    I-BOOK
    目    I-BOOK
    》    O
    ,    O
    详    O
    细    O
    记    O
    载    O
    了    O
    多    O
    种    O
    中    B-HERB
    药    I-HERB
    材    I-HERB
    。    O
    

    6. 注意事项

    6.1 数据质量

  • 标注一致性:确保标注人员对标签定义有统一的理解,避免错误和不一致。
  • 6.2 类别不均衡

  • 如果某些实体类别的数据较少,可以考虑以下方法:

    • 数据增强:使用同义词替换、随机插入等方法增加数据量。
    • 损失函数加权:对罕见类别赋予更大的权重。
  • 6.3 参数调整

  • 根据模型在验证集上的表现,调整学习率、批次大小、训练轮次等超参数。
  • 6.4 模型保存与加载

训练完成后,保存模型以便后续加载和使用。

model.save_pretrained('./ner_model')
tokenizer.save_pretrained('./ner_model')

# 加载模型
from transformers import AutoModelForTokenClassification, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('./ner_model')
model = AutoModelForTokenClassification.from_pretrained('./ner_model')

7. 扩展与提升

7.1 使用外部资源

  • 词典与知识库:利用古代人物、地名、中医术语词典,辅助识别。

7.2 集成学习

  • 结合多个模型的输出,提升识别效果。

7.3 模型优化

  • 剪枝与量化:优化模型,提高推理速度。

7.4 部署

  • 将模型部署为 API 或集成到应用系统中,方便实际使用。

8. 总结

通过上述步骤,您可以:

  • 利用预训练模型:充分发挥 GujiRoBERTa_jian_fan 在古汉语文本处理上的优势。
  • 解决特定命名实体识别任务:针对12类实体,进行精细的标注和模型训练。
  • 应用于实际场景:将模型部署在相关领域,如古籍数字化、医药文献分析等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值