题意
有一些高低不平的数,对于每一个询问,输出砍掉<=这个高度的数之后的块数。
思路
先仰慕q神。
离线一下。
把树和询问都从大到小排序。
让我们来考虑现在要除去的高度h。
我们可以把高度大于h的树全部插上,那么得到的状态就是除去h之后的状态。
考虑现在要插的树tmp。
如果这个tmp原来位置的左边已经有树插着了,显然块的数目要减少一个。
如果tmp原来位置的右边也有树了,块的数目要减少一个。
那么对于每个插入的树都执行这个操作,最后维护一个当前的块数ans即可。
这题用G++不开输入挂就T _(:3」∠)_
代码
#include <stack>
#include <cstdio>
#include <list>
#include <cassert>
#include <set>
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <functional>
#include <cstring>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#include <cmath>
//#include <ext/pb_ds/assoc_container.hpp>
//#include <ext/pb_ds/hash_policy.hpp>
using namespace std;
#define LL long long
#define ULL unsigned long long
#define SZ(x) (int)x.size()
#define Lowbit(x) ((x) & (-x))
#define MP(a, b) make_pair(a, b)
#define MS(arr, num) memset(arr, num, sizeof(arr))
#define PB push_back
#define X first
#define Y second
#define ROP freopen("input.txt", "r", stdin);
#define MID(a, b) (a + ((b - a) >> 1))
#define LC rt << 1, l, mid
#define RC rt << 1|1, mid + 1, r
#define LRT rt << 1
#define RRT rt << 1|1
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const double eps = 1e-8;
const int MAXN = 5e4+10;
const int MOD = 9901;
const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
int cases = 0;
typedef pair<int, int> pii;
struct POINT
{
int id, val;
bool operator < (const POINT &a) const
{
return val > a.val;
}
}p[MAXN], q[MAXN];
int vis[MAXN], ans[MAXN];
int main()
{
//ROP;
int n, m;
while (~scanf("%d%d", &n, &m))
{
MS(vis, 0);
for (int i = 1; i <= n; i++)
{
scanf("%d", &p[i].val);
p[i].id = i;
}
for (int i = 1; i <= m; i++)
{
scanf("%d", &q[i].val);
q[i].id = i;
}
sort(q+1, q+m+1);
sort(p+1, p+1+n);
int pos = 1, curAns = 0;
for (int i = 1; i <= m; i++)
{
while (pos <= n && p[pos].val > q[i].val)
{
vis[p[pos].id] = 1;
curAns++; //一定要先自增,不然就会出现倒扣答案的情况。。
if (vis[p[pos].id-1]) curAns--;
if (vis[p[pos].id+1]) curAns--;
pos++;
}
ans[q[i].id] = curAns;
}
for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
}
return 0;
}