通配符匹配

39 篇文章 0 订阅
10 篇文章 0 订阅

这个问题我看的别人的,用的动态规划解决。

  • dp[i][j]表示的是s的前i个字符和p的前j个字符是否匹配;
  • 首先要使从1到最后初始化为false;
  • 然后初始化dp[0][0],表示前0个字符肯定匹配;
  • 然后根据是否是*来初始化边缘的dp值,如果s是是全*,则dp[i][0]全是true;
  • 最后要匹配中间的字符,根据是否有* 和是否有?来判断,最后根据是否相等来判断;
  • 返回d[lenS][lenP];

C++ 代码:

class Solution {
public:
    /**
     * @param s: A string 
     * @param p: A string includes "?" and "*"
     * @return: A boolean
     */
    bool isMatch(const char *s, const char *p) {
          if (s==NULL && p==NULL) {
            return true;
        }
        if (s==NULL || p==NULL) {
            return false;
        }
        int lenS = strlen(s);
        int lenP = strlen(p);
        bool dp[lenS+1][lenP+1];//dp[i][j]表示s的前i个字符和p的钱j个字符是匹配的
        for (int i=1; i<=lenS; i++) {
            for (int j=1; j<=lenP; j++) {
                dp[i][j] = false;
            }
        }
        dp[0][0] = true;
        for (int i=1; i<=lenS; i++) {
            if (dp[i-1][0]==true && s[i-1] == '*' ) {
                dp[i][0] = true;
            }else {
                dp[i][0] = false;
            }
        }
        for (int i=1; i<=lenP; i++) {
            if (dp[0][i-1]==true && p[i-1] == '*') {
                dp[0][i] = true;
            } else {
                dp[0][i] = false;
            }
        }
        for (int i=1; i<=lenS; i++) {
            for (int j=1; j<=lenP; j++) {
                if (s[i-1] == '*' || p[j-1] == '*') {
                    dp[i][j] = dp[i-1][j] || dp[i][j-1];
                } else if (s[i-1]=='?'||p[j-1]=='?') {
                    dp[i][j] = dp[i-1][j-1];
                } else {
                    dp[i][j] = ((s[i-1]==p[j-1]?true : false) && dp[i-1][j-1]);
                }
            }
        }
        return dp[lenS][lenP];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值