Hdu-4507 吉哥系列故事——恨7不成妻(数位DP)

185 篇文章 0 订阅
96 篇文章 0 订阅

Description

  单身!
  依然单身!
  吉哥依然单身!
  DS级码农吉哥依然单身!
  所以,他生平最恨情人节,不管是214还是77,他都讨厌!
  
  吉哥观察了214和77这两个数,发现:
  2+1+4=7
  7+7=7*2
  77=7*11
  最终,他发现原来这一切归根到底都是因为和7有关!所以,他现在甚至讨厌一切和7有关的数!

  什么样的数和7有关呢?

  如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关——
  1、整数中某一位是7;
  2、整数的每一位加起来的和是7的整数倍;
  3、这个整数是7的整数倍;

  现在问题来了:吉哥想知道在一定区间内和7无关的数字的平方和。

Input

输入数据的第一行是case数T(1 <= T <= 50),然后接下来的T行表示T个case;每个case在一行内包含两个正整数L, R(1 <= L <= R <= 10^18)。

Output

请计算[L,R]中和7无关的数字的平方和,并将结果对10^9 + 7 求模后输出。

Sample Input

3
1 9
10 11
17 17

Sample Output

236
221
0


分析:求平方和,要维护三个信息,每个状态下的个数,每个状态下的数字和,每个状态下的平方和,然后根据平方和公式乱搞就行了,感觉写的很丑。


#include<iostream>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<cstdio>
#include<set>
#include<map>
#include<vector>
#include<ctime>  
#include<cstring>
#include<stack>
#include<cmath>
#include<queue>
#define INF 0x3f3f3f3f
#define eps 1e-9
#define MAXN 100000
#define MOD 1000000007
using namespace std;
typedef long long ll;
int T;
ll l,r,cs[20],a[22],dp[22][7][7][2],dpsum[22][7][7][2],dpsum2[22][7][7][2];
void dfs(int pos,int sta1,int sta2,int limit)
{
	if(pos == -1) 
	{
		dpsum[pos+1][sta1][sta2][limit] = 0ll;
		dpsum2[pos+1][sta1][sta2][limit] = 0ll;
		dp[pos+1][sta1][sta2][limit] = sta1 && sta2;
		return;
	}
	if(dp[pos+1][sta1][sta2][limit] >= 0) return;
	int up = limit? a[pos] : 9;
	ll ans = 0,ans1 = 0,ans2 = 0;
	for(int i = 0;i <= up;i++)
	{
		if(i == 7) continue;
		dfs(pos-1,(sta1 + i) % 7,(sta2*10 + i) % 7,limit && i == up);
		ll num = dp[pos][(sta1 + i) % 7][(sta2*10 + i) % 7][limit && i == up];
		ll num2 = dpsum[pos][(sta1 + i) % 7][(sta2*10 + i) % 7][limit && i == up];
		ll num3 = dpsum2[pos][(sta1 + i) % 7][(sta2*10 + i) % 7][limit && i == up];
		ans = (ans + num) % MOD;
		ans1 = (ans1 + ((cs[pos]*i) % MOD )*num + num2) % MOD;
		ans2 = (ans2 + num*((cs[pos]*i % MOD)*(cs[pos]*i % MOD) % MOD) % MOD + num3 + 2*(cs[pos]*i % MOD)*num2 % MOD) % MOD;
	}  
	dp[pos+1][sta1][sta2][limit] = ans;
	dpsum[pos+1][sta1][sta2][limit] = ans1;
	dpsum2[pos+1][sta1][sta2][limit] = ans2;
	return;
}
ll solve(ll x)
{
	if(x < 0) return 0;
	int pos = 0;
	while(x)
	{
		a[pos++] = x % 10;
		x /= 10;
	}
	if(!pos) return 0ll; 
	memset(dp,-1,sizeof(dp));
	dfs(pos-1,0,0,1);
	return dpsum2[pos][0][0][1];
}
int main()
{
	cs[0] = 1ll;
	for(int i = 1;i <= 19;i++) cs[i] = cs[i-1]*10 % MOD;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%lld%lld",&l,&r); 
		printf("%lld\n",(solve(r)-solve(l-1) + MOD) % MOD);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值