太太,你很有钱吗?

他们蜷缩在风门里面——是两个衣着破烂的孩子。
  “有旧报纸吗,太太?”
  我正在忙着,我本想说没有——可是我看到了他们的脚。他们穿着瘦小的凉鞋在炉边留下痕迹。
  我给他们端来可可奶、吐司面包和果酱,为的是让他们抵御外面的风寒,之后,我又返回厨房,接着做我的家庭预算……
  我觉得前面屋里很静,便向里面看了一眼。
  那个女孩把空了的杯子拿在后上,看着它。那男孩用平淡的语气顺:“太太,你很有钱吗?”
  “我有钱吗?上帝,不!”我看着我寒酸的外衣说。
  那个女孩把杯子放进盘子里,小心翼翼地。“您的杯子盘子很配套。”她的声音还着嘶哑,带着并不是从胃中传来的饥饿感。
  然后他们就走了,带着他们用以御寒的旧报纸。他们没有说一句谢谢,他们不需要说,他们已经做了比谢谢还要多的事情。蓝色瓷杯和盘虽然是简朴的,但它们很配套,我拿出土豆泥并拌上棕色的肉汁,我有一间屋子住,我丈夫有一份稳定的工作——这些事情很配套。
  我把椅子移回炉边,打扫着卧室,那小凉鞋踩在泥印子依然留在炉边,我让它们留在那里,我希望它们在那里,以免我忘了我是多么地富有。
内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值