a = np.mat()
b = np.mat()
a*b = np.mat() # 两个矩阵对应值相乘
a@b = np.mat() # 两个矩阵进行矩阵乘法
torch.matmul(a,b) # 等同于 a@b
torch.mul(a,b) # 等同于 a*b
三维矩阵
A = np.mat(); B = A
[A, B]@[A.T, B.T] = [A@A.T , B@B.T]
[A, B]@A.T = [A@A.T, B@A.T]
本文详细介绍了矩阵运算的基本概念,包括矩阵相乘和对应元素相乘的区别,并通过NumPy和PyTorch两种工具进行了具体操作演示。文章强调了三维矩阵运算的特点,如转置和连乘操作。
a = np.mat()
b = np.mat()
a*b = np.mat() # 两个矩阵对应值相乘
a@b = np.mat() # 两个矩阵进行矩阵乘法
torch.matmul(a,b) # 等同于 a@b
torch.mul(a,b) # 等同于 a*b
三维矩阵
A = np.mat(); B = A
[A, B]@[A.T, B.T] = [A@A.T , B@B.T]
[A, B]@A.T = [A@A.T, B@A.T]

被折叠的 条评论
为什么被折叠?
