点云语义分割:KPConv解读
KPConv是基于卷积操作的点云语义分割模型,KPConv网络中使用了一种新的点卷积操作,通过在欧式空间内定义卷积核点,与点云中的点进行卷积操作,同时可以将可变形卷积扩展到点卷积操作。可变形的KPConv适用于复杂的任务,规则的KPConv适用于简单的任务。
点云卷积相对于普通的图像卷积的难点:
点是空间上的稀疏点
无序性
旋转不变性
一、点卷积
论文中给出了点卷积的一般通用公式,但是一上来直接看公式对点云卷积过程的理解会有点困难,所以我们先通过图像的方式来解释一下点卷积的过程,然后再回头看公式。
上图是论文中作者给出的图像卷积(左侧)和点卷积(右侧)的图解过程,个人觉得理解上面这个图的关键是 W k W_k

本文详细解析了点云卷积的概念,通过对比图像卷积,介绍了点卷积的一般公式,并以KPConv为例,阐述了点云卷积的实现方式,包括建立点与卷积核点相关性的方法。同时,讨论了规则和可变形点云卷积的区别,以及点卷积层中的下采样策略、池化层和网络超参数。
订阅专栏 解锁全文


被折叠的 条评论
为什么被折叠?



