冒泡算法原理:
将临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换,这样一趟过去后,最大或最小的数字被交换到了最后一位,然后再从头开始进行两两比较交换,直到倒数第二位时结束。
冒泡排序过程
设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上”漂浮”(交换位置),如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
#include <stdio.h>
void swap(int *a, int *b);
int main()
{
int array[10] = {15, 225, 34, 42, 52, 6, 7856, 865, 954, 10};
int i, j;
for (i = 0; i < 10; i++)
{
//每一次由底至上地上升
for (j = 9; j > i; j--)
{
if (array[j] < array[j-1])
{
swap(&array[j], &array[j-1]);
}
}
}
for (i = 0; i < 10; i++)
{
printf("%d\n", array[i]);
}
return 0;
}
void swap(int *a, int *b)
{
int temp;
temp = *a;
*a = *b;
*b = temp;
}
上面代码中,如果里面一层循环在某次扫描中没有执行交换,则说明此时数组已经全部有序列,无需再扫描了。因此,增加一个标记flag,每次发生交换,就标记flag=1,如果某次循环完没有标记,则说明已经完成排序。
#include <stdio.h>
void swap(int *a, int *b);
int main()
{
int array[10] = {2, 1, 3, 4, 5, 6, 7, 8, 9, 10};
int i, j;
int flag = 1; //设置标记变量
for (i = 0; i < 10 && flag; i++)
{
flag = 0; //只要flag在下一次外循环条件检测的时候值为0,就说明已经排好序,不用继续循环
for (j = 9; j > i; j--)
{
if (array[j] < array[j-1])
{
swap(&array[j], &array[j-1]);
flag = 1; //如果有交换,就将标记变量赋1
}
}
}
for (i = 0; i < 10; i++)
{
printf("%d\n", array[i]);
}
return 0;
}
void swap(int *a, int *b)
{
int temp;
temp = *a;
*a = *b;
*b = temp;
}
在第一步优化的基础上发进一步思考:如果R[0..i]已是有序区间,上次的扫描区间是R[i..n],记上次扫描时最后 一次执行交换的位置为lastSwapPos,则lastSwapPos在i与n之间,不难发现R[i..lastSwapPos]区间也是有序的,否则这个区间也会发生交换;所以下次扫描区间就可以由R[i..n] 缩减到[lastSwapPos..n]。
void BubbleSort_3(int a[], int size)
{
int i, j, temp, lastSwapPos, lastSwapPos_temp = 0;
for (i = 0; i < size - 1; i++)
{
lastSwapPos = lastSwapPos_temp;
for (j = size - 1; j > lastSwapPos; j--)
{
if (a[j - 1] > a[j])
{
temp = a[j - 1];
a[j - 1] = a[j];
a[j] = temp;
lastSwapPos_temp = j - 1;
}
}
}
}