# Physical Examination

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5915    Accepted Submission(s): 1656

Problem Description
WANGPENG is a freshman. He is requested to have a physical examination when entering the university.
Now WANGPENG arrives at the hospital. Er….. There are so many students, and the number is increasing!
There are many examination subjects to do, and there is a queue for every subject. The queues are getting longer as time goes by. Choosing the queue to stand is always a problem. Please help WANGPENG to determine an exam sequence, so that he can finish all the physical examination subjects as early as possible.

Input
There are several test cases. Each test case starts with a positive integer n in a line, meaning the number of subjects(queues).
Then n lines follow. The i-th line has a pair of integers (ai, bi) to describe the i-th queue:
1. If WANGPENG follows this queue at time 0, WANGPENG has to wait for ai seconds to finish this subject.
2. As the queue is getting longer, the waiting time will increase bi seconds every second while WANGPENG is not in the queue.
The input ends with n = 0.
For all test cases, 0<n≤100000, 0≤ai,bi<231.

Output
For each test case, output one line with an integer: the earliest time (counted by seconds) that WANGPENG can finish all exam subjects. Since WANGPENG is always confused by years, just print the seconds mod 365×24×60×60.

Sample Input
5 1 2 2 3 3 4 4 5 5 6 0

Sample Output
1419
Hint
In the Sample Input, WANGPENG just follow the given order. He spends 1 second in the first queue, 5 seconds in the 2th queue, 27 seconds in the 3th queue, 169 seconds in the 4th queue, and 1217 seconds in the 5th queue. So the total time is 1419s. WANGPENG has computed all possible orders in his 120-core-parallel head, and decided that this is the optimal choice.

Source

a1 b1

a2 b2

a1 + a1*b2 + a2 <= a2 + a2*b1 + a1

AC代码：

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int mo=365*24*60*60;
const int maxn=100010;

struct fun
{
__int64 a,b;
}node[maxn];

bool cmp(fun a, fun b)
{
return a.a*b.b<b.a*a.b;
}

int main()
{
int n, i, j;
while(scanf("%d", &n), n)
{
for(i = 0; i<n; i++)
{
scanf("%I64d %I64d", &node[i].a, &node[i].b);
}
sort(node, node+n, cmp);
__int64 ans = 0, tem = 0;
for(i = 0; i<n; i++)
{
ans+=(node[i].a+tem*node[i].b)%mo;
ans%=mo;
tem = ans;
}
printf("%I64d\n", ans);
}
return 0;
}  

a1 b1

a2 b2

a1 + a1*b2 + a2 <= a2 + a2*b1 + a1

a1  b1

a2  b2

a3  b3

#include<iostream>
#include<cstdlib>
#include<vector>
#include<map>
#include<cstring>
#include<set>
#include<string>
#include<algorithm>
#include<sstream>
#include<ctype.h>
#include<fstream>
#include<string.h>
#include<stdio.h>
#include<math.h>
#include<stack>
#include<queue>
#include<ctime>
//#include<conio.h>
using namespace std;

const int INF_MAX=0x7FFFFFFF;
const int INF_MIN=-(1<<30);

const double eps=1e-10;
const double pi=acos(-1.0);

#define pb push_back   //a.pb( )
#define chmin(a,b) ((a)<(b)?(a):(b))
#define chmax(a,b) ((a)>(b)?(a):(b))

template<class T> inline T gcd(T a,T b)//NOTES:gcd(
{if(a<0)return gcd(-a,b);if(b<0)return gcd(a,-b);return (b==0)?a:gcd(b,a%b);}
template<class T> inline T lcm(T a,T b)//NOTES:lcm(
{if(a<0)return lcm(-a,b);if(b<0)return lcm(a,-b);return a*(b/gcd(a,b));}

typedef pair<int, int> PII;
typedef vector<PII> VPII;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef long long LL;
int dir_4[4][2]={{0,1},{-1,0},{0,-1},{1,0}};
int dir_8[8][2]={{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1},{1,0},{1,1}};
//下，左下，左，左上，上，右上，右，右下。

//******* WATER ****************************************************************

struct node {
LL a, b;
double d;
bool operator < (const node& k) const{
return a < k.a; //升序
}
};

vector<node> vn;

LL calc() {
LL mod = 365 * 24 * 60 * 60;
LL ret = 0;
LL sum = 0;
for(int i = 0; i < vn.size(); i++) {
ret = sum * vn[i].b + vn[i].a;
sum += ret;
sum %= mod;
}
return sum;
}

int main() {
int n;
node tmp;
while(scanf("%d", &n) && n) {
vn.clear();
for(int i = 0; i < n; i++) { scanf("%I64d%I64d", &tmp.a, &tmp.b); tmp.d = (double)tmp.a / (tmp.b - 1);  vn.push_back(tmp);}
//sort(vn.begin(), vn.end());
printf("%I64d\n", calc());
}
return 0;
}


#### 2017西安区域赛现场赛

2017-11-02 00:34:30

#### 2017 ICPC 西安站现场赛总结&amp;部分题解

2017-10-30 11:01:15

#### 2016 ACM-ICPC 亚洲区(青岛赛区)现场赛

2017-09-26 20:34:57

#### 2016ACM/ICPC亚洲区大连站现场赛题解报告

2016-11-06 20:38:27

#### 2017ACM-ICPC西安赛区

2017-11-11 12:07:33

#### 2017年第42届ACM-ICPC亚洲区域赛青岛赛区（现场赛）

2017-11-06 16:03:08

#### 2012 金华赛区现场赛

2013-07-31 10:22:21

#### 2017ICPC/ACM亚洲赛区西安站现场赛 总结

2017-10-31 08:49:28

#### 2017 ACM-ICPC (西安赛区) C-Sum

2017-09-16 17:02:20

#### 2017 ACM-ICPC 青岛站

2017-11-06 20:44:10