玩转算法面试(九):贪心算法

455. 分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i ,都有一个胃口值 gi ,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j ,都有一个尺寸 sj 。如果 sj >= gi ,我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

注意:

你可以假设胃口值为正。
一个小朋友最多只能拥有一块饼干。

示例 1:

输入: [1,2,3], [1,1]

输出: 1

解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: [1,2], [1,2,3]

输出: 2

解释:
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

思路:将最大的饼干依次满足胃口最大的孩子,这样能满足的孩子数最多

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        if(g.size() == 0 || s.size() == 0)
            return 0;
        
        sort(g.begin(), g.end(), greater<int>());
        sort(s.begin(), s.end(), greater<int>());
        int res = 0;
        int gi = 0;
        int si = 0;
        
        while(gi < g.size() && si < s.size())
        {
            if(s[si] >= g[gi])
            {
                res++;
                si++;
                gi++;
            }
            else
            {
                gi++;
            }
        }
        
        return res;
    }
};

392. 判断子序列

给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

你可以认为 s 和 t 中仅包含英文小写字母。字符串 t 可能会很长(长度 ~= 500,000),而 s 是个短字符串(长度 <=100)。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。

示例 1:
s = "abc", t = "ahbgdc"

返回 true.

示例 2:
s = "axc", t = "ahbgdc"

返回 false.

后续挑战 :

如果有大量输入的 S,称作S1, S2, ... , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

class Solution {
public:
    bool isSubsequence(string s, string t) {
        if(s.length() > t.length())
            return false;
        if(s.length() == 0)
            return true;

        for(int i = 0, j = 0; j < t.length(); j++)
        {
            if(s[i] == t[j])
                i++;
            if(i == s.length())
                return true;
        }
        return false;    
    }
};

435. 无重叠区间

给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。

注意:

    可以认为区间的终点总是大于它的起点。
    区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。

示例 1:

输入: [ [1,2], [2,3], [3,4], [1,3] ]

输出: 1

解释: 移除 [1,3] 后,剩下的区间没有重叠。

示例 2:

输入: [ [1,2], [1,2], [1,2] ]

输出: 2

解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。

示例 3:

输入: [ [1,2], [2,3] ]

输出: 0

解释: 你不需要移除任何区间,因为它们已经是无重叠的了。

第一种方法:动态规划法

class Solution {
public:
    static bool compare(const pair<int, int>a, const pair<int, int>b)
    {
        if(a.first != b.first)
            return a.first < b.first;
        return a.second < b.second;
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        int n = intervals.size();
        if(n < 2)
            return 0;
        vector<pair<int, int>> interval;
        for(int i = 0; i < n; i++)
        {
            pair<int, int>temp;
            temp.first = intervals[i][0];
            temp.second = intervals[i][1];
            interval.push_back(temp);
        }
        
        sort(interval.begin(), interval.end(), compare);
        vector<int>memo(n, 1);
        
        for(int i = 1; i < n; i++)
            for(int j = 0; j < i; j++)
                if(interval[i].first >= interval[j].second)
                    memo[i] = max(memo[i], memo[j] +1 );
        return n - memo[n-1];
    }
};

第二种方法:贪心法

按区间结尾排序,区间结尾小的排在前面。每次选择结尾早的,且和前一个区间不冲突。

class Solution {
public:
    static bool compare(const pair<int, int>a, const pair<int, int>b)
    {
        if(a.second != b.second)
            return a.second < b.second;
        return a.first < b.first;
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        int n = intervals.size();
        if(n < 2)
            return 0;
        vector<pair<int, int>> interval;
        for(int i = 0; i < n; i++)
        {
            pair<int, int>temp;
            temp.first = intervals[i][0];
            temp.second = intervals[i][1];
            interval.push_back(temp);
        }
        
        sort(interval.begin(), interval.end(), compare);
        
        int res = 1;
        int pre_interval = 0;
        for(int i = 1; i < n; i++)
        {
            if(interval[i].first >= interval[pre_interval].second)
            {
                res++;
                pre_interval = i;
            }
        }
        
        return n - res;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值