PaddleDetection学习5——使用Paddle-Lite在 Android 上实现实时的人脸检测(C++)

本文介绍了如何在Android设备上利用Paddle-Lite实现人脸检测。首先,详细阐述了环境准备和部署步骤,包括下载Paddle-Lite-Demo并运行face_detection_demo项目。接着,针对后处理耗时较长的问题,通过引入OpenCV进行优化,显著减少了后处理时间。最后,实现了使用手机摄像头进行实时人脸检测的功能,优化后处理时间降至1.6ms,达到实时检测的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 环境准备

参考前一篇在 Android 上使用Paddle-Lite实现实时的目标检测功能

2. 部署步骤

2.1 下载Paddle-Lite-Demo

下载链接
人脸检测 Demo 位于 Paddle-Lite-Demo/face_detection/android/app/cxx/face_detection 目录

2.2 运行face_detection_demo项目

手机连接电脑,打开 USB 调试和文件传输模式,并在 Android Studio 上连接自己的手机设备(手机需要开启允许从 USB 安装软件权限)。
点击 Run 按钮,自动编译 APP安装到手机。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

waf13916

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值