扩散模型
文章平均质量分 85
页页读
这个作者很懒,什么都没留下…
展开
-
【DiffusionModel系列】Sora揭底系列模型介绍 (VAE/DDPM/SD/DiT/Sora)
该文档介绍了几种深度学习模型,特别是那些在图像合成和处理方面有显著应用的模型。文档内容涉及变分自编码器(VAE)、去噪扩散概率模型(DDPM)、稳定扩散(Stable Diffusion)、扩散变换器(DiT),以及Sora模型的介绍。变分自编码器(VAE):VAE通过最大化数据的边缘似然来训练模型,采用变分下界(ELBO)和KL散度来近似似然函数,从而学习数据的隐含结构。它利用重参数化技巧来使梯度反向传播可行。去噪扩散概率模型(DDPM)原创 2024-03-13 20:46:05 · 673 阅读 · 0 评论 -
【基础知识】DDPM中的解码器部分(“L0”)解释以及概率密度函数的解释
概率密度函数(Probability Density Function, PDF)是连续随机变量的概念,描述了该随机变量在不同值上取值的相对可能性。对于随机变量XXX,其概率密度函数fxf(x)fx满足以下条件:1.fx≥0fx≥0对所有xxx都成立,这意味着概率密度不可能是负值。2.∫−∞∞fxdx1∫−∞∞fxdx1,这意味着随机变量取所有可能值的概率之和为1。原创 2024-03-13 14:51:06 · 1172 阅读 · 0 评论 -
【Paper Reading】7.DiT(VAE+ViT+DDPM) Sora的base论文
该论文提出了一种综合VAE+ViT+DDPM的基础架构,主要是在latent patches(可以去看VAE)空间进行操作,这样做的好处是首先计算cost会减小很多,例如如果在原始的图片上操作,例如256x256,那在latent patches空间就可以是32x32. Latent patches是指训练一个图像编码器,我们首先可以把原始图像编码为embeding, 也就是E(x), 编码后的空间就是论文中所说的latent patches空间.的变体结构效果最好. 具体的各个变体的说明可以看论文.原创 2024-03-13 10:55:18 · 1298 阅读 · 0 评论 -
【DDPM】DDPM中为什么从xt到x_{t-1}还需要加上一个随机变量z?
然而,因为原始的生成过程包含了随机性(通过噪声的增加),所以在恢复过程中也需要引入相应的随机性来模仿这个噪声。这样,我们就能够遍历所有可能的噪声路径来找到对应于我们想要生成的数据的路径。恢复过程(也称为去噪过程)必须尝试估计在每个时间步加入的噪声,这通常是通过神经网络来实现的,网络试图学习从带噪声的数据恢复出去噪声数据的映射。这项是必要的,它保证了生成过程能够探索所有可能的生成路径,从而增强模型生成数据的多样性。这个恢复过程是通过一个受控的方式逐步减少噪声,以便最终能够恢复出准确的原始数据。原创 2024-03-11 16:51:10 · 1188 阅读 · 0 评论 -
【基础知识】为什么在ControlNet中的zero init是有效的,核心原理是什么?
在ControlNet或任何特定的神经网络架构中,使用"zero initialization"(零初始化)或其他特定的初始化方法的有效性取决于多个因素,包括网络的设计、优化目标以及训练数据的性质。虽然在许多情况下,权重的零初始化并不是首选(因为它可能导致对称性破坏问题和梯度消失),在一些特定场景或网络层中,零初始化却可能带来特定的优势。原创 2024-03-11 16:09:14 · 957 阅读 · 0 评论 -
【基础知识】VAE中编码器预测了潜在空间z的分布,引入随机噪声ϵ后,对方差的梯度也引入了随机性,那么它是怎么控制这种随机性来实现确定性训练的呢?
在变分自编码器(VAE)中,重参数化技巧是用来解决随机变量的梯度优化问题的一个关键步骤。具体来说,重参数化允许我们对含有随机变量的模型进行梯度下降优化,而不是直接对随机变量本身进行操作。这是通过将随机性从模型的参数中分离出来实现的,从而使得梯度下降算法可以用于模型的训练。原创 2024-03-07 20:41:21 · 1020 阅读 · 0 评论 -
【基础知识】DDPM中的“Langevin动力学”的概念
这句话描述的是与Langevin动力学相关的一个概念,在这里提到的是使用εθ作为数据密度的学习梯度。总的来说,这句话讲述的是在Langevin动力学的框架下,利用εθ作为一个经过学习的梯度,来模拟或采样数据分布,从而使得生成的样本更接近真实的数据分布。在机器学习和深度学习中,Langevin动力学可以用于训练生成模型,如生成对抗网络(GANs)和变分自编码器(VAEs),通过有效地从复杂的数据分布中采样,以生成新的数据点(如图片、文本等)。),这允许粒子跳出局部最小值,增加探索不同区域的可能性。原创 2024-03-06 14:26:09 · 1992 阅读 · 0 评论 -
【基础知识】DDPM中提到的“Rao-Blackwell定理和闭式解(closed form expressions)”
在这段文本中,作者在描述一种高效的训练方法,该方法涉及到使用随机梯度下降优化损失函数 L 的随机项。进一步的改进来自于通过重写损失函数 L(参见公式(3))来减少方差。特别地,公式(5)使用了KL散度(Kullback-Leibler散度),这是一种度量两个概率分布之间差异的方法。在这里,KL散度用于直接比较在给定x0x_0x0的条件下,时间t−1t-1t−1的真实数据分布pθxt−1∣xtpθxt−1∣xt。原创 2024-03-05 17:36:35 · 1619 阅读 · 0 评论
分享