NYOJ 1030Yougth's Game[Ⅲ] 记忆化搜索

Yougth's Game[Ⅲ]

时间限制:3000 ms  |  内存限制:65535 KB
难度:4
描述

有一个长度为n的整数序列,A和B轮流取数,A先取,每次可以从左端或者右端取一个数,所有数都被取完时游戏结束,然后统计每个人取走的所有数字之和作为得分,两人的策略都是使自己的得分尽可能高,并且都足够聪明,求A的得分减去B的得分的结果。

输入
输入包括多组数据,每组数据第一行为正整数n(1<=n<=1000),第二行为给定的整数序列Ai(-1000<=Ai<=1000)。
输出
对于每组数据,输出A和B都采取最优策略的情况下,A的得分减去B的得分的结果。
样例输入
3
1 2 3
4
2 4 5 3
样例输出
2
0
来源
Yougth原创
上传者
TC_杨闯亮


思路:dp[i][j]表示区间在[i,j]内先手能取得的最大值。

代码:

记忆化递归写法:

#include <iostream>
#include <functional>
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long ll;
using namespace std;

#define INF 0x3f3f3f3f
const int maxn = 1005;

int dp[maxn][maxn];
int n,a[maxn],sum[maxn];


int dfs(int s,int t)
{
    if (dp[s][t]!=-1) return dp[s][t];
    if (s>t) return 0;
    if (s==t) return dp[s][t]=a[s];
    int x=min(dfs(s+1,t),dfs(s,t-1));
    dp[s][t]=sum[t]-sum[s-1]-x;
    return dp[s][t];
}

int main()
{
    int i,j;
    while (~scanf("%d",&n))
    {
        memset(sum,0,sizeof(sum));
        for (i=1;i<=n;i++) scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i];
        memset(dp,-1,sizeof(dp));
        printf("%d\n",dfs(1,n)*2-sum[n]);
    }
    return 0;
}

非递归写法:

#include <iostream>
#include <functional>
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long ll;
using namespace std;

#define INF 0x3f3f3f3f
const int maxn = 1005;

int dp[maxn][maxn];
int n,a[maxn],sum[maxn];

int main()
{
    int i,j;
    while (~scanf("%d",&n))
    {
        memset(sum,0,sizeof(sum));
        for (i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            sum[i]=sum[i-1]+a[i];
        }
        memset(dp,0,sizeof(dp));
        for (int k=0;k<n;k++)
        {
            for (i=1;i+k<=n;i++)
            {
                j=i+k;
                dp[i][j]=sum[j]-sum[i-1]-min(dp[i+1][j],dp[i][j-1]);
            }
        }
        printf("%d\n",dp[1][n]*2-sum[n]);
    }
    return 0;
}


阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页