Jinming Su

try doing and try to do.

图像语义分割专栏论文列表

Alias Title Year PASCALVOC The Pascal Visual Object Classes Challenge: A Retrospective IJCV 2015 翻译 SegNet: A Deep Convolutio...

2018-03-02 15:30:05

阅读数 1254

评论数 0

[转]linux系统创建SFTP用户及设置其chroot权限

转载自: https://blog.csdn.net/akeyile2010/article/details/50751834 前言: 开发项目客户要求与三方通过sftp交互文件,我方系统部署sftp服务器。考虑安全,计划对提供给三方的用户实现chroot控制 提供sftp本次选用...

2018-08-13 19:16:07

阅读数 120

评论数 0

[工程-学习笔记] Pyqt5常用组件

参考: https://maicss.gitbooks.io/pyqt5/content/ 最近由于自己工作的需要,需要使用pyqt5写一点简单的东西,整理出一个大纲,了解一下pyqt5主要有哪些东西,需要查的地方就去 常用模块 QtWidgets: 包含了一系列创建桌面应用的...

2018-08-07 16:42:55

阅读数 278

评论数 0

tensorflow API(1): tf底层API--tf.xxx

tf.xxx包含tensorflow自带的一些底层的API,主要包括函数和成员变量 https://www.tensorflow.org/versions/master/api_docs/python/tf Function tf.abs(x, name=None) t...

2018-06-23 14:18:24

阅读数 99

评论数 0

tensorflow 调试

在代码中任何位置想要调试打印samples变量,可以进行如下操作: inputs_queue = prefetch_queue.prefetch_queue( variable_name, capacity=128 * config.num_clones) with tf.Session()...

2018-06-21 22:37:49

阅读数 216

评论数 0

Tensorflow (2): tf.slim库解读

官方文档: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim tf.contrib.slim是一个轻量级的库,目的是方便地定义, 训练和评估tensorflow中复杂的模型 ...

2018-06-15 15:44:08

阅读数 614

评论数 0

Deeplab v3 (2): 源码分析

代码: https://github.com/tensorflow/models/tree/master/research/deeplab 主要函数及注释如下 main() # 配置GPU conifg = slim.deployment.model_deploy.De...

2018-06-12 10:40:27

阅读数 2529

评论数 4

Tensorflow (1): 读取数据的三种方式及tfrecord的使用

参考: https://blog.csdn.net/lujiandong1/article/details/53376802 https://blog.csdn.net/happyhorizion/article/details/77894055 读取数据的三种方式 Pr...

2018-06-09 15:29:18

阅读数 581

评论数 0

pix2pixHD安装

安装pytorch 这个照着官网来就行,本人使用pytorch 0.4.0 cuda 9.0,可以进行使用 sudo pip install http://download.pytorch.org/whl/cu90/torch-0.4.0-cp27-cp27mu-linux_x86_64....

2018-06-05 11:04:57

阅读数 1087

评论数 0

Deeplab v3 (1): 源码训练和测试

本文主要介绍根据github tensorflow/models中官方代码来训练deeplab v3+ 源代码: https://github.com/tensorflow/models/tree/master/research/deeplab 配置deeplab v3 Clone...

2018-06-03 09:22:52

阅读数 4880

评论数 11

Deep Unsupervised Saliency Detection: A Multiple Noisy Labeling Perspective

Abstract CVPR 2018,西北工业大学和澳大利亚合作的文章. 监督学习的方法显著物体检测方法通常需要大量的标注(labor-intensive),并且可能阻碍了学习到的模型的泛化能力。本文提出一种新颖的若监督方法,从别的弱监督方法产生的结果进行学习,这些结果通常带有noise,因此...

2018-05-02 21:03:05

阅读数 613

评论数 0

【轻量级】轻量级网络结构总结

Depthwise-Wise convolutions是最近两年比较火的一种模块结构。这个结构第一次出现是在一篇博士论文中,L. Sifre. Rigid-motion scattering for image classification. hD thesis, Ph. D. thesis, 2...

2018-05-02 10:12:50

阅读数 1620

评论数 0

用于FCN的Pascal VOC 2012增强版语义分割数据集制作

数据集准备 train/val/test的划分,这个采用Hariharan[1]的做法,这个也是deeplab采用的方法,下载地址https://ucla.app.box.com/s/rd9z2xvwsfpksi7mi08i2xqrj7ab4keb 目录如下: test.txt ...

2018-03-26 17:03:37

阅读数 2792

评论数 5

[FoveaNet]FoveaNet: Perspective-aware Urban Scene Parsing

Abstract 清华大学和一些企业合作的文章,发表于ICCV 2017.文章主要 目前,大多数的图片解析模型都将所有尺寸和位置的信息同等对待,而没有考虑汽车捕获的城市场景图片的几何属性. 因此,由于摄像头的透视投影,会导致存在不同的物体尺寸,并且不可避免地造成场景解析和识别错误. 本方法在...

2018-03-15 16:35:53

阅读数 337

评论数 0

[GCPNet]Scene Parsing with Global Context Embedding

Abstract 加州大学美熹德分校发表在ICCV 2017上的工作. 本文利用全局信息进行场景解析。训练基于场景相似度的网络来产生一张图片的全局信息特征关系,然后利用该信息产生全局和空间的先验知识。最后将这些先验知识作为全局上下文线索结合到分割网络中。实验辨明这种做法可以较少与全局信息相悖的...

2018-03-14 23:10:41

阅读数 276

评论数 0

[SGN]SGN: Sequential Grouping Networks for Instance Segmentation

Abstract 香港中文大学ICCV 2017的文章 实例分割是一个结合了物体检测和语义分割的任务,物体遮挡和数量差异大的物体是实例分割中的主要困难。本文考虑到实例分割的困难性,提出将这个复杂的任务用一系列神经网络来解决,其中每个神经网络的左右都是将该程度下的语义信息进行聚集,从而使用简...

2018-03-14 20:52:43

阅读数 499

评论数 0

[zoom-out]Feedforward semantic segmentation with zoom-out features

Abstract CVPR 2015的文章,作者来自芝加哥丰田技术学院。早期的方法大多基于随机场结构来获取结构信息,本文考虑不使用这些方法来解决分割问题. 本文的语义分割方法是基于超像素级别的,主要做法就是使用缩放结构来利用不同等级的空间特征对超像素的类别进行判定,从而达到分割的目的. ...

2018-03-06 20:02:32

阅读数 255

评论数 0

ParseNet源码训练和分析

ParseNet 官方源代码位置: Caffe: https://github.com/weiliu89/caffe/tree/fcn model: https://gist.github.com/weiliu89/45e9e8de2c13af6476ca#file-readme-md ...

2018-03-05 10:23:58

阅读数 520

评论数 3

[ParseNet]ParseNet: Looking Wider to See Better

Abstract 北卡罗纳大学教堂山分校的文章, ICLR 2016. 本文的 Movitation 是看到FCN并没有结合全局信息,所以没有利用潜在的scene-level的语义上下文特征,所以提出一种结合average feature的网络结构来提高分割性能,最终在SiftFlow和PAS...

2018-03-02 22:25:36

阅读数 1758

评论数 0

Residual attention network for image classification

Abstract CVPR2017的文章,商汤、清华、港中文和北邮合作的文章。基本想法就是受现在的attention mechanism 和residual的激励,考虑把两者放在一起实现更好的效果。 本文的主要贡献是: 可堆叠的网络结构 注意力残差学习 Bottom-up top-d...

2018-03-02 19:30:22

阅读数 928

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭