快速幂

http://www.cnblogs.com/buptLizer/archive/2011/11/10/2244486.html

运算规则

模运算与基本四则运算有些相似,但是除法例外。其规则如下:

(a + b) % p = (a % p + b % p) % p (1)

(a – b) % p = (a % p – b % p) % p (2)

(a * b) % p = (a % p * b % p) % p (3)

(a^b) % p = ((a % p)^b) % p (4)

结合律:

((a+b) % p + c) % p = (a + (b+c) % p) % p (5)

((a*b) % p * c)% p = (a * (b*c) % p) % p (6)

交换律:

(a + b) % p = (b+a) % p (7)

(a * b) % p = (b * a) % p (8)

分配律:

((a +b)% p * c) % p = ((a * c) % p + (b *c) % p) % p (9)

重要定理:

若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p);(10)

若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p);(11)

若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a – c) ≡ (b – d) (%p),

(a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p); (12)


快速幂运算:

int pow(int a,int n)
{
    int rs=1;
    while(n)
    {
    if(n&1)
      rs=rs*a;
    a=a*a;
    n=n>>1;
  }
  return rs;
}
快速幂取余:

//求a^b%n,O(logb)
__int64 get_mi_mod(__int64 a,__int64 b,int n)
{
    if(0 == a)
        return 0;
    if(0 == b)
        return 1;
    __int64 rs=1;
    while(b)
    {
        if(b&1)
            rs=(rs*a)%n;
        a=(a*a)%n;
        b>>=1;
    }
    return rs;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014552756/article/details/51547894
个人分类: 模板
上一篇匈牙利算法
下一篇baby-step算法
想对作者说点什么? 我来说一句

快速幂模板

2017年10月18日 229B 下载

快速幂:一种经过优化的算法

2009年08月04日 109B 下载

没有更多推荐了,返回首页

关闭
关闭