在ubuntu安装cudnn解决疑难并验证(参考官方文档)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014561933/article/details/79968539

在ubuntu安装cudnn解决疑难并验证(参考官方文档)

-1.cudnn下载

cudnn-9.1-linux-x64-v7.1(搭配cuda9.1)
免官网注册 下载
也可以 https://developer.nvidia.com/cudnn 进入nvidia官方注册后下载。

0.官方文档

真心建议有能力的同学自行阅读官方文档, 传送门

但在其中copy步骤操作,需要copy到/usr/local/cuda-xx版本号/xxx 的绝对路径下。
而不是/usr/local/cuda/下的软连接。

另外如果不是通过deb方式而是通过tar方式安装,无法验证是否成功,可以下载本文后面给出的cudnn_samples_v7下载链接.按照官方文档方式验证。

1.什么是cudnn

cuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经网络(Deep Neural Networks)中的基础操作而设计基于GPU的加速库。
基本上所有的深度学习框架都支持cuDNN这一加速工具,例如:Caffe、Caffe2、TensorFlow、Torch、Pytorch、Theano等,具有明显的提速作用。

2.环境

   操作系统:ubuntu 16.04LTS
   显卡:nvidia Geforce 970
   驱动:NVIDIA-Linux-x86_64-390.48(.run方式安装)
   cuda:cuda 9.1 toolkit Installers for Linux Ubuntu 16.04 x86_64
   (.run方式安装,可以选择不装它自己带的驱动,deb当时会直接覆盖导致冲突) 
   编译器:gcc & g++ :5.3.0 (和cuda版本匹配,详情见
   https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html)    

3.安装

3.1 确保nvidia驱动以及cuda均已正确安装。

可以查看我稍候更新的博文安装nvidia验证,以及安装cuda验证。基本上综合了全网遇到的情况。

3.2正式安装

3.2.1进入目录解压下载好的压缩包。

$ tar -xzvf cudnn-9.0-linux-x64-v7.tgz

3.2.2进入解压后的cuda目录,复制文件到cuda-9.1安装目录 并更改权限

$ sudo cp cuda/include/cudnn.h /usr/local/cuda-9.1/include
(后面的地址不是软链接,是安装的绝对路径,下面的一样)
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda-9.1/lib64
(更改的权限文件也是实际安装的绝对路径)
$ sudo chmod a+r /usr/local/cuda-9.1/include/cudnn.h
/usr/local/cuda-9.1/lib64/libcudnn*

这样,就不用操作软连接了。
deb安装方式(对ubuntu更洁净)见官方文档。传送门

4.验证

deb方式下验证参考官方文档,tar方式无法直接验证,只是copy了文件,没有deb方式下的压缩包。
这里给出deb方式下的验证包,下载后解压可以验证tar方式。

cudnn_samples_v7

解压到可写的文件夹下,进入

$ cd  cudnn_samples_v7/mnistCUDNN

编译

$make clean && make

运行mnistCUDNN样例

$ ./mnistCUDNN

如果输出:

Test passed!

就成功了。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页