参考博客:
http://46aae4d1e2371e4aa769798941cef698.devproxy.yunshipei.com/kkk584520/article/details/52721838
因为是在windows-caffe下,所以在上述博客基础上做了些较为详细的记录,外加一点点修改
一、修改caffe.proto
在路径 caffe-windows-master\src\caffe\proto中找到caffe.proto.prototxt,添加
optional AllPassParameter all_pass_param = 155;
还有
message AllPassParameter {
optional float key = 1 [default = 0];
}
添加完成后保存,然后就是windows-caffe下的多一步的操作,需要点击extract_proto批处理文件,重新生成caffe.pb.hpp和caffe.pb.cc文件。
二、添加新层头文件
在路径caffe-windows-master\include\caffe\layers下添加all_pass_layer.h文件
#ifndef CAFFE_ALL_PASS_LAYER_HPP_
#define CAFFE_ALL_PASS_LAYER_HPP_
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/layers/neuron_layer.hpp"
namespace caffe {
template <typename Dtype>
class AllPassLayer : public NeuronLayer<Dtype> {
public:
explicit AllPassLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual inline const char* type() const { return "AllPass"; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
//virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
// const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
//virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
// const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};
} // namespace caffe
#endif // CAFFE_ALL_PASS_LAYER_HPP_
这里我在上述博客的基础上,将关于gpu的虚函数注释掉了,因为我的caffe是在GPU模式下编译的(若不注释,会出现链接错误),若是在CPU模式下编译,可不注释。
三、添加新层源文件
caffe-windows-master\src\caffe\layers路径下添加all_pass_layer.cc
#ifndef CAFFE_ALL_PASS_LAYER_HPP_
#define CAFFE_ALL_PASS_LAYER_HPP_
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/layers/neuron_layer.hpp"
namespace caffe {
template <typename Dtype>
class AllPassLayer : public NeuronLayer<Dtype> {
public:
explicit AllPassLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual inline const char* type() const { return "AllPass"; }
protected:
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
//virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
// const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
//virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
// const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};
} // namespace caffe
#endif // CAFFE_ALL_PASS_LAYER_HPP_
在路径下添加之后,需要在caffe VS C++工程中添加.hpp文件和.cc文件
四、重新编译
选中caffe工程,点击rebuild即可
五、实验添加的新层
写个简单的测试网络结构 deploy.prototxt
name: "AllPassTest"
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } }
}
layer {
name: "ap"
type: "AllPass"
bottom: "data"
top: "conv1"
all_pass_param {
key: 12.88
}
}
windows-caffe测试方法和在Linux下相同,打开CMD,进入caffe根目录
bin\caffe.exe time -model deploy.prototxt
done
这里只是做个记录

1366

被折叠的 条评论
为什么被折叠?



