Marshall的专栏

一旦把问题想清楚,代码是水到渠成的事,所以首先是思考,思考,思考

排序:
默认
按更新时间
按访问量

MRF马尔科夫随机场

PGM学习之七 MRF,马尔科夫随机场

2016-10-10 15:34:11

阅读数:871

评论数:0

贝叶斯网络

贝叶斯分类器与贝叶斯网络

2016-09-28 16:03:49

阅读数:597

评论数:0

MEMM最大熵马尔科夫模型

HMM MEMM CRF 区别 联系 HMM,MEMM,CRF模型的比较 标记偏置 隐马尔科夫 最大熵马尔科夫 HMM MEMM

2016-06-30 22:45:25

阅读数:2539

评论数:0

lda主题模型

其实这篇文章也可以叫gibbs抽样在lda主题模型中的应用。lda里的重头戏就是gibbs抽样。话说现在论文起名字也是技术活儿,一般人还把握不好,一样的内容起个不同的名字,被reject的几率有时还真不一样。 lda主题模型又是一个有深厚数学背景的算法。 主题模型(topic model)是一种...

2015-12-02 19:17:36

阅读数:2412

评论数:0

条件随机场

马尔科夫随机场 马尔可夫随机场(Markov Random Field)包含两层意思。 马尔可夫性质:它指的是一个随机变量序列按时间先后关系依次排开的时候,第N+1时刻的分布特性,与N时刻以前的随机变量的取值无关。拿天气来打个比方。如果我们假定天气是马尔可夫的,其意思就是我们假设今天的天气仅仅与昨...

2015-11-30 23:54:16

阅读数:1519

评论数:0

基于最大熵模型的人名分类

字标注问题 先看一个句子:我是一名程序员。将所有字分为4类,S表示单字,B表示词首,M表示词中,E表示词尾。 如果我们知道上述句子中每个字的类别,即: 我/S 是/S 一/B 名/E 程/B 序/M 员/E 。/S 那么我们就可以知道这个句子的分词结果:我 是 一名 程序员 。 从这里可以看出,分...

2015-11-26 17:06:15

阅读数:799

评论数:0

HMM隐马尔科夫模型

马尔科夫过程 在概率论及统计学中,马尔可夫过程(英语:Markov process)是一个具备了马尔可夫性质的随机过程,因为俄国数学家安德雷·马尔可夫得名。马尔可夫过程是不具备记忆特质的(memorylessness)。换言之,马尔可夫过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来...

2015-06-20 23:06:57

阅读数:3298

评论数:1

RBM

//RBM.h class RBM { public: int N; int n_visible; int n_hidden; double **W; double *hbias; double *vbias; RBM(int, int, int, double**,...

2015-05-05 11:06:02

阅读数:736

评论数:0

朴素Bayes

假设某个体有n项特征(Feature),分别为F1、F2、...、Fn。现有m个类别(Category),分别为C1、C2、...、Cm。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值: P(C|F1F2...Fn)    = P(F1F2...Fn|C)P(C) / P(...

2015-04-03 23:24:34

阅读数:666

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭