LeetCode maximum binary tree

本文介绍了一种构建最大二叉树的方法,通过寻找数组中最大值作为根节点,然后递归地构建左右子树。这种方法确保了每个节点的值大于其子树中所有节点的值。

 

# Definition for a binary tree node.

class TreeNode(object):
     def __init__(self, x):
         self.val = x
         self.left = None
         self.right = None


class Solution(object):
    def make_tree(self,root,nums,is_left):
        if len(nums)==0:return
        max_ind=nums.index(max(nums))
        if is_left:
            root.left=TreeNode(nums[max_ind])
            if len(nums[0:max_ind]) > 0:
                self.make_tree(root.left, nums[0:max_ind], True)
            if len(nums[max_ind + 1:]) > 0:
                self.make_tree(root.left, nums[max_ind + 1:], False)
        else:
            root.right=TreeNode(nums[max_ind])
            if len(nums[0:max_ind]) > 0:
                self.make_tree(root.right, nums[0:max_ind], True)
            if len(nums[max_ind + 1:]) > 0:
                self.make_tree(root.right, nums[max_ind + 1:], False)

    def constructMaximumBinaryTree(self, nums):
        """
        :type nums: List[int]
        :rtype: TreeNode
        """
        root=TreeNode(max(nums))
        max_ind=nums.index(max(nums))
        self.make_tree(root,nums[0:max_ind],True)
        self.make_tree(root,nums[max_ind+1:],False)
        return root

nums=[3,2,1,6,0,5]
sl=Solution()
root=sl.constructMaximumBinaryTree(nums)
print root

 

内容概要:本文详细介绍了一个基于MATLAB实现的SWT-SVM故障诊断分类预测项目,通过平稳小波变换(SWT)进行信号去噪与多尺度特征提取,结合支持向量机(SVM)实现机械设备故障的智能分类。项目涵盖从数据采集、预处理、SWT分解、特征提取与降维(如PCA)、模型训练与优化(含交叉验证、网格搜索、贝叶斯优化)、性能评估(混淆矩阵、ROC曲线、F1分数等)到结果可视化与GUI界面开发的完整流程。系统具备高可解释性、强鲁棒性和良好工程集成能力,适用于多行业设备健康监测,并提供完整的代码实现与部署方案。; 适合人群:具备一定MATLAB编程基础,熟悉信号处理与机器学习算法的高校研究生、科研人员及工业领域从事设备故障诊断、智能运维的工程师和技术人员。; 使用场景及目标:①应用于智能制造、风电、轨道交通、石化、航空航天等领域的设备故障早期检测与健康状态评估;②构建端到端的智能诊断pipeline,提升诊断准确率与自动化水平;③通过GUI交互界面实现数据导入、模型训练、实时预测与结果导出,服务于科研教学与工业实际部署。; 阅读建议:建议读者结合文中提供的完整MATLAB代码与GUI设计,逐步复现各模块功能,重点关注SWT参数选择、特征降维策略、SVM超参数优化及模型评估方法。在实践过程中调试信号处理流程与分类性能,深入理解算法原理与工程落地的关键环节。
【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)内容概要:本文介绍了一个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,并提供了Matlab代码实现。该模型结合了MBLS在函数逼近和学习能力方面的优势,以及Copula理论在处理多变量非高斯分布和捕捉变量间复杂相关性结构的能力,能够有效处理光伏出力的不确定性与时空相关性,从而提高预测精度和可靠性。此外,文档还列举了多个相关的科研方向和技术应用实例,如风电预测、虚拟电厂调度、风光制氢合成氨系统优化、多目标优化算法等,展示了其在电力系统、新能源、优化调度等多个领域的广泛应用前景。; 适合人群:具备一定编程基础,尤其是熟悉Matlab编程语言,从事新能源、电力系统、优化调度、机器学习等相关领域研究的科研人员和研究生。; 使用场景及目标:①应用于光伏发电功率的高精度时空概率预测,为电网调度、能源管理和市场交易提供决策支持;②作为研究Copula理论和MBLS算法在复杂非线性系统建模中应用的案例,促进相关算法的改进与创新;③结合文中提到的其他优化算法(如多目标优化、智能优化算法)和应用场景(如虚拟电厂、综合能源系统),构建更复杂的系统优化与决策模型。; 阅读建议:此资源不仅提供了具体的代码实现,还涵盖了丰富的科研背景和应用方向。建议读者在学习过程中,不仅要理解MBLS和Copula理论的核心思想与实现细节,还应结合文中提及的其他技术(如优化算法、深度学习模型)进行横向对比和综合应用,以拓宽研究视野。同时,鼓励读者基于提供的代码框架,针对具体问题进行参数调整和模型改进,通过实践加深对理论的理解。
### Linux下的段错误产生的原因及调试方法在深入探讨Linux下段错误的产生原因与调试方法之前,我们先来理解一下“段错误”(Segmentation Fault)的基本概念。段错误,通常由信号SIGSEGV触发,是操作系统检测到程序试图访问它不应该访问的内存区域时所引发的一种异常。这种异常可能源于多种情况,包括但不限于尝试访问空指针、越界读写内存或执行非法指令等。#### 一、段错误产生的原因1. **访问空指针**:当程序中的某个指针被设置为NULL或0,并且程序员在未检查其有效性的情况下就进行解引用操作时,就会触发段错误。例如,在代码片段中,`unsigned char* ptr = 0x00; *ptr = 0x00;` 这样的操作会直接导致段错误,因为`ptr`指向的是无效地址。2. **内存越界**:这是最常见的段错误原因之一。在C/C++编程中,数组或动态分配的内存如果被超出边界访问,也会导致段错误。这通常发生在程序员没有正确处理边界条件,或者对内存管理不当的情况下。3. **非法指令**:尽管不常见,但执行未定义或非法的指令也可能触发段错误。#### 二、调试方法面对段错误,有效的调试是解决问题的关键。以下是一些常用的调试技巧:1. **使用GDB进行调试**:GDB(GNU调试器)是Linux环境下强大的调试工具,可以帮助开发者定位和分析程序运行时的问题。通过GDB,可以在程序崩溃时获取调用栈信息,查看变量状态,以及步进执行代码。如上文所示,使用`gdb ./a.out`命令后,GDB会在程序崩溃处暂停,显示错误发生的具体位置和上下文环境。2. **利用Core Dump文件**:当进程因某些信号终止时,默认行为是产生一个Core Dump文件,这是一个包含进程终止时刻内存快照的文件。通过分析Core Dump文件,可以更深入地了解程序的状态和导致崩溃
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值