- 博客(529)
- 资源 (7)
- 收藏
- 关注
原创 py-R-FCN源码分析
softmax_loss_ohem_layer.cu#include #include #include #include "caffe/layers/softmax_loss_ohem_layer.hpp"#include "caffe/util/math_functions.hpp"namespace caffe {template __global__ void
2017-01-05 16:41:52
6781
原创 caffe的layer
下图是caffe layer的整体构架layer整体概述Caffe源码(三):layer 分析Caffe源码解析3:Layer【深度学习】caffe中那些layersdata layerCaffe源码解析4: Data_layerNeuron_LayerCaffe源码解析6:Neuron_Layer
2017-01-04 11:19:49
769
原创 为caffe添加新的层
how to develop new layerscaffe中增加自己的layer【深夜福利】Caffe 增加自定义 Layer 及其 ProtoBuffer 参数caffe添加新层教程【Caffe实践】 添加自己的网络层如何在caffe中自定义网络层Caffe 单独测试添加的layer在caffe 中添加Crowd counting 数据层
2017-01-03 22:17:45
994
原创 conv和deconv解读
首先,要知道caffe里的卷积核都是三维的在caffe中卷积核是三维的还是二维的?caffe中卷积计算详解Caffe源码解析5:Conv_LayerCaffe 代码阅读-卷积卷积运算转换为矩阵乘法关于deconv这个概念很混乱,没有统一的定义,在不同的地方出现,意义却不一样。上采样的卷积层有很多名字:全卷积(full
2017-01-03 21:23:50
18880
原创 bolb layer
Caffe源码解析1:Blobcaffe源码解析 — blob.cppcaffe源码解析之blob.hpp或blob.cppcaffe源码分析--Blob类代码研究
2017-01-03 18:58:49
592
原创 线性回归与局部加权线性回归
Linear Regression(线性回归)(一)—LMS algorithmLinear Regression(线性回归)(二)—正规方程(normal equations)Linear Regression(线性回归)(三)—代价函数J(θ)选择的概率解释Locally weighted linear regression(局部加权线性回归)
2017-01-01 12:27:32
742
原创 caffe训练分类完整流程
使用Caffe对图片进行训练并分类的简单流程Caffe在Cifar10上复现ResNetfine-tuning:利用已有模型训练其他数据集如何用caffe训练图像分类深度学习模型https://github.com/shuokay/resnet/blob/master/resnet-small.pyhttps://github
2017-01-01 10:47:35
4953
原创 caffe画loss曲线
用图形画出caffe输出数据的python程序&&git基础命令 Caffe如何画出训练中的loss曲线图和accuracy曲线图如何绘制caffe训练过程中的loss和accurary的曲线
2016-12-26 23:58:39
1178
原创 网络可视化
faster rcnn修改demo.py保存网络中间结果学习笔记:深度学习网络特征逐层可视化神经网络:caffe特征可视化的代码样例
2016-12-26 23:26:58
1250
原创 python绘制precision-recall曲线、ROC曲线
基础知识 TP(True Positive):指正确分类的正样本数,即预测为正样本,实际也是正样本。FP(False Positive):指被错误的标记为正样本的负样本数,即实际为负样本而被预测为正样本,所以是False。TN(True Negative):指正确分类的负样本数,即预测为负样本,实际也是负样本。FN(False Negative):指被错误的标记为负样本的正样本数,即...
2016-12-23 20:04:07
60131
8
原创 ResNets、HighwayNets、DenseNets
ResNets、HighwayNets、DenseNets:用 TensorFlow 实现超深度神经网络
2016-12-15 23:35:29
2401
原创 faster rcnn源码理解
理解faster rcnn的源码有几个关键点1.算法原理、网络结构、训练过程这是基本2.要弄懂源码里训练数据数据是怎么组织起来的,imdb,roidb,blob很关键,弄清它们的数据结构以及各个阶段是如何产生的3.一定的python、numpy基础知识rpn_train.pt#stage 1训练RPN时用的网络结构name: "ZF"layer {
2016-12-12 23:07:19
20127
4
原创 caffe利用snapshot从断点恢复训练
训练网络时迭代次数往往需要数万次,需要训练几天,如果突发什么意外(断电)训练停止了岂不要从头训练。其实借用snapshot机制,比如每隔1万次迭代保存一下网络参数,然后下次训练判断有无snapshot,有的话从snapshot恢复参数就可以了。下面是一个例子#coding:utf-8import caffeimport numpy as npimport osfrom
2016-12-10 21:51:26
5026
原创 opencv静态编译
这是为了在没有配置opencv的电脑上运行依赖opencv的程序Opencv246+vs2012生成不依赖编译环境的exe文件静态编译与动态编译的区别
2016-12-09 16:51:47
670
原创 神经网络压缩加速
深度学习模型压缩方法综述(一)深度网络模型压缩 - CNN Compression神经网络压缩:Deep Compression神经网络压缩(1):Deep CompressionDeep Learning(深度学习)之(六)【深度神经网络压缩】Deep Compression (ICLR2016 Best Paper)CNN 模型压缩与加速
2016-12-06 22:11:14
4034
原创 代价函数
Keras笔记 -- objectiveCaffe中的各种loss函数适合哪些问题?神经网络Loss损失函数总结cross entropy交叉熵代价函数交叉熵损失函数两种交叉熵损失函数的异同Multinomial Logistic Loss and Cross Entropy Loss are the samecaff
2016-11-09 10:10:04
1757
原创 读写csv、xml、mat、json、exel
Python XML解析python读写xml文件ImageNet和PASCAL VOC图像描述的xml文件的解析、修改和生成
2016-11-03 16:15:45
1660
原创 没有GUI时使用matplotlib绘图
需添加:import matplotlib as mplmpl.use('Agg')而且必须添加在import matplotlib.pyplot之前,否则无效最后在plt.draw后面加上 plt.savefig("/home/yourname/picFaster.jpg")就可以把绘制的图存为jpg,down到本地查看就行
2016-10-28 13:43:51
5859
原创 如何将本地文件通过终端上传到linux服务器或从linux主机下载文件到本地
SecureCRT与SshClient不同的就是,SecureCRT没有图形化的文件传输工具,不过也不影响,用命令来实现的话,其实会方便快捷很多。第一种方式:上传文件只需在shell终端仿真器中输入命令“rz”,即可从弹出的对话框中选择本地磁盘上的文件,利用Zmodem上传到服务器当前路径下。下载文件只需在shell终端仿真器中输入命令“sz 文件名”,即可利用Zmodem将文件下载到
2016-10-27 08:43:47
25403
原创 ubuntu安装MATLAB2014b
Matlab_R2014b linux版 安装笔记ubuntu安装 matlab2014bMATLAB2014b安装(Ubuntu 14.10)https://pan.baidu.com/s/1qYJ9tNm#list/path=%2Finstall.jarlibmwservices.so
2016-10-25 12:23:15
1361
原创 SOM自组织神经网络
自组织神经网络介绍:自组织特征映射SOM(Self-organizing feature Map),第一部分自组织神经网络介绍:自组织特征映射SOM(Self-organizing feature Map),第二部分自组织神经网络介绍:自组织特征映射SOM(Self-organizing feature Map),第三部分
2016-10-19 09:37:24
1224
原创 背景建模总结
目标检测中背景建模方法背景建模(一) Evaluation of Background Subtraction Techniques统计均值前景检测算法(Mean-variation)前景检测算法-SACON(SAMPLE CONSENSUS)基于局部二值相似性模式(LBSP)的运动目标检测算法codebook-背景建模(三)——以像素值为特征的方法(2)
2016-10-18 19:58:02
1646
原创 行为识别
Reading papers_10(人体行为识别特征点提取小综述)Activity Recognition行为识别基于3D卷积神经网络的人体行为理解(论文笔记)视频中行为识别公开数据库汇总
2016-10-13 16:24:50
1780
原创 attention model
自然语言处理中的Attention Model:是什么及为什么深度学习和自然语言处理中的attention和memory机制
2016-09-23 10:38:37
1591
原创 图像语义分割
从特斯拉到计算机视觉之「图像语义分割」关于图像语义分割的总结和感悟FCNN: Fully Convolutional Networks for Semantic SegmentationDeeplab: Semantic Image Segmentation with Deep Convolutional Nets and Ful
2016-09-15 17:28:17
11938
isodata聚类算法步骤说明
2015-10-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅