GRU

GRU是LSTM的一种简化版,保留了处理长依赖问题的能力。它通过更新门和重置门控制信息流动,简化了LSTM的三个门结构。更新门决定前一状态信息的传递程度,重置门则控制前一状态对当前候选集的影响。GRU在网络效率和性能之间找到了平衡,常用于序列模型。
摘要由CSDN通过智能技术生成

关注微信公众号:NLP分享汇。【喜欢的扫波关注,每天都在更新自己之前的积累】

文章链接:https://mp.weixin.qq.com/s/lr65Pun1_jP6rUY5-66OSg


GRU是LSTM网络的一种效果很好的变体,它较LSTM网络的结构更加简单,而且效果也很好,因此也是当前非常流形的一种网络。GRU既然是LSTM的变体,因此也是可以解决RNN网络中的长依赖问题。

 

在LSTM中引入了三个门函数:输入门、遗忘门和输出门来控制输入值、记忆值和输出值。而在GRU模型中只有两个门:分别是更新门和重置门。具体结构如下图所示:

 

图片

 

图中的zt和rt分别表示更新门和重置门。更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,更新门的值越大说明前一时刻的状态信息带入越多重置门控制前一状态有多少信息被写入到当前的候选集 ℎ̃ 𝑡 上,重置门越小,前一状态的信息被写入的越少。

 

根据上面的GRU的模型图,我们来看看网络的前向传播公式:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>