关注微信公众号:NLP分享汇。【喜欢的扫波关注,每天都在更新自己之前的积累】

文章链接:https://mp.weixin.qq.com/s/lr65Pun1_jP6rUY5-66OSg
GRU是LSTM网络的一种效果很好的变体,它较LSTM网络的结构更加简单,而且效果也很好,因此也是当前非常流形的一种网络。GRU既然是LSTM的变体,因此也是可以解决RNN网络中的长依赖问题。
在LSTM中引入了三个门函数:输入门、遗忘门和输出门来控制输入值、记忆值和输出值。而在GRU模型中只有两个门:分别是更新门和重置门。具体结构如下图所示:

图中的zt和rt分别表示更新门和重置门。更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,更新门的值越大说明前一时刻的状态信息带入越多。重置门控制前一状态有多少信息被写入到当前的候选集 ℎ̃ 𝑡 上,重置门越小,前一状态的信息被写入的越少。
根据上面的GRU的模型图,我们来看看网络的前向传播公式:


GRU是LSTM的一种简化版,保留了处理长依赖问题的能力。它通过更新门和重置门控制信息流动,简化了LSTM的三个门结构。更新门决定前一状态信息的传递程度,重置门则控制前一状态对当前候选集的影响。GRU在网络效率和性能之间找到了平衡,常用于序列模型。
1059

被折叠的 条评论
为什么被折叠?



