数据库(四)优化

参考:https://blog.csdn.net/u013087513/article/details/77899412

对MySQL语句性能优化

① 为查询缓存优化查询
② EXPLAIN 我们的SELECT查询(可以查看执行的行数)
③ 当只要一行数据时使用LIMIT 1
④ 为搜索字段建立索引
⑤ 在Join表的时候使用相当类型的列,并将其索引
⑥ 千万不要 ORDER BY RAND  ()
⑦ 避免SELECT *
⑧ 永远为每张表设置一个ID
⑨ 可以使用ENUM 而不要VARCHAR
⑩ 尽可能的使用NOT NULL
⑪ 固定长度的表会更快
⑫ 垂直分割
⑬ 拆分打的DELETE或INSERT语句
⑭ 越小的列会越快
⑮ 选择正确的存储引擎
⑯ 小心 "永久链接"
具体描述如下:
(一) 使用查询缓存优化查询
大多数的MySQL服务器都开启了查询缓存。这是提高性能最有效的方法之一,而且这是被MySQL引擎处理的。当有很多相同的查询被执行了多次的时候,这些查询结果会被放入一个缓存中,这样后续的相同查询就不用操作而直接访问缓存结果了。
这里最主要的问题是,对于我们程序员来说,这个事情是很容易被忽略的。因为我们某些查询语句会让MySQL不使用缓存,示例如下:
1:SELECT username FROM user WHERE    signup_date >= CURDATE()
2:SELECT username FROM user WHERE    signup_date >= '2014-06-24‘
上面两条SQL语句的差别就是 CURDATE() ,MySQL的查询缓存对这个函数不起作用。所以,像 NOW() 和 RAND() 或是其它的诸如此类的SQL函数都不会开启查询缓存,因为这些函数的返回是会不定的易变的。所以,你所需要的就是用一个变量来代替MySQL的函数,从而开启缓存。
查看查询缓存情况:
show variables like '%query_cache%'; 

Variable_name Value desc
query_cache_limit 1048576 Mysql允许缓存的单个缓存对象的最大值,不过mysql只有在查询的所有结果都返回后才知道其是否超出此大小,但是在查询一开始便会尝试使用缓存存储查询结果,一旦发现超过可缓存最大值则会从缓存中将其删除,并增大Qcache_not_cached的值,因此,如果知道某查询的结果会超出可缓存的最大值的时候,应该在查询语句中使用SQL_NO_CACHE
query_cache_min_res_unit 4096 存储缓存的最小内存块,这个值过小,会减少空间浪费,但是会导致更频繁的内存块申请操作,设置的过大,会有着更高的碎片产生率,可以通过(query_cache_size - Qcache_free_memory) / Qcache_queryer_in_cache 来获得一个接近理想的值,同时,如果Qcache_free_blocks存在空闲块,但是Qcache_lowmem_prunes的值仍然在增长,则表明碎片过多导致了缓存结果会过早删除
query_cache_size 33554432 查询缓存的内存总大小,其必须是1024的整数倍,单位为字节。Mysql启动时,一次性分配并且初始化这里指定大小的内存空间,改变其值,mysql会立刻删除所有的缓存对象并重新配置其大小及初始化,在性能较强的通用服务器上,查询缓存可能会成为影响服务器扩展的因素,因为它存在成为服务器资源竞争单点的可能性,在多核心的服务器上甚至还有可能导致服务进程宕机
query_cache_type ON 是否打开查询缓存,其可用值有OFF,ON和DEMAND,DEMAND仅在查询语句中显式使用SQL_CACHE时才会使用缓存
query_cache_wlock_invalidate OFF 如果某个数据表被其它的链接锁住,是否仍然从查询缓存中返回结果。OFF表示返回


Variable_name Value desc
Qcache_free_blocks 1057 已经分配了块,但是尚未存储数据 , 如果该值显示较大,则说明Query Cache 中的内存碎片较多了,可能需要寻找合适的机会进行整理。
Qcache_free_memory 21667632 没有被申请划分为数据块的部分
Qcache_hits 2379301 缓存命中次数
Qcache_inserts 412811 执行向缓存中插入缓存对象的次数
Qcache_lowmem_prunes 0 因为内存太小不能继续存储的对象个数, 如果Qcache_lowmem_prunes 值比较大,表示查询缓存区大小设置太小,需要增大。
Qcache_not_cached 1248823 查询没被缓存的个数
Qcache_queries_in_cache 1804 保存在缓存中的查询个数
Qcache_total_blocks 5043 已经分配好的块个数

(二) 使用EXPLAIN关键字检测查询
使用EXPLAIN关键字可以使我们知道MySQL是如何处理SQL语句的,这样可以帮助我们分析我们的查询语句或是表结构的性能瓶颈;EXPLAIN的查询结果还会告诉我们索引主键是如何被利用的,数据表是如何被被搜索或排序的....等等。语法格式是:EXPLAIN +SELECT语句;


我们可以看到,前一个结果显示搜索了 7883 行,而后一个只是搜索了两个表的 9 和 16 行。查看rows列可以让我们找到潜在的性能问题。 
(三)当只要一行数据时使用LIMIT 1
加上LIMIT 1可以增加性能。MySQL数据库引擎会在查找到一条数据后停止搜索,而不是继续往后查询下一条符合条件的数据记录。
(四)为搜索字段建立索引
索引不一定就是给主键或者是唯一的字段,如果在表中,有某个字段经常用来做搜索,需要将其建立索引。
索引的有关操作如下:
(五)在join表的时候使用相当类型的列,并将其索引
如果在程序中有很多JOIN查询,应该保证两个表中join的字段时被建立过索引的。这样MySQL颞部会启动优化JOIN的SQL语句的机制。注意:这些被用来JOIN的字段,应该是相同类型的。例如:如果要把 DECIMAL 字段和一个 INT 字段Join在一起,MySQL就无法使用它们的索引。对于那些STRING类型,还需要有相同的字符集才行。(两个表的字符集有可能不一样)  
例如:
SELECT company_name FROM users LEFT JOIN companies ON (users.state = companies.state) WHERE users.id = “user_id”
两个 state 字段应该是被建过索引的,而且应该是相当的类型,相同的字符集。
(六)切记不要使用ORDER BY RAND()
如果你真的想把返回的数据行打乱了,你有N种方法可以达到这个目的。这样使用只让你的数据库的性能呈指数级的下降。这里的问题是:MySQL会不得不去执行RAND()函数(很耗CPU时间),而且这是为了每一行记录去记行,然后再对其排序。就算是你用了Limit 1也无济于事(因为要排序) 
(七)避免使用SELECT *
从数据库里读出越多的数据,那么查询就会变得越慢。并且,如果我们的数据库服务器和WEB服务器是两台独立的服务器的话,这还会增加网络传输的负载。 所以,我们应该养成一个需要什么就取什么的好的习惯。
Hibernate性能方面就会差,它不用*,但它将整个表的所有字段全查出来 
优点:开发速度快
(八)永远为每张表设置一个ID主键
我们应该为数据库里的每张表都设置一个ID做为其主键,而且最好的是一个INT型的(推荐使用UNSIGNED),并设置上自动增加的 AUTO_INCREMENT标志。 就算是我们 users 表有一个主键叫 “email”的字段,我们也别让它成为主键。使用 VARCHAR 类型来当主键会使用得性能下降。另外,在我们的程序中,我们应该使用表的ID来构造我们的数据结构。 而且,在MySQL数据引擎下,还有一些操作需要使用主键,在这些情况下,主键的性能和设置变得非常重要,比如,集群,分区…… 在这里,只有一个情况是例外,那就是“关联表”的“外键”,也就是说,这个表的主键,通过若干个别的表的主键构成。我们把这个情况叫做“外键”。比如:有一个“学生表”有学生的ID,有一个“课程表”有课程ID,那么,“成绩表”就是“关联表”了,其关联了学生表和课程表,在成绩表中,学生ID和课程ID叫“外键”其共同组成主键。 
(九)使用ENUM而不是VARCHAR
ENUM 类型是非常快和紧凑的。在实际上,其保存的是 TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。 如果我们有一个字段,比如“性别”,“国家”,“民族”,“状态”或“部门”,我们知道这些字段的取值是有限而且固定的,那么,我们应该使用 ENUM 而不是 VARCHAR。
(十)尽可能的不要赋值为NULL
如果不是特殊情况,尽可能的不要使用NULL。在MYSQL中对于INT类型而言,EMPTY是0,而NULL是空值。而在Oracle中 NULL和EMPTY的字符串是一样的。NULL也需要占用存储空间,并且会使我们的程序判断时更加复杂。现实情况是很复杂的,依然会有些情况下,我们需要使用NULL值。 下面摘自MySQL自己的文档: “NULL columns require additional space in the row to record whether their values are NULL. For MyISAM tables, each NULL column takes one bit extra, rounded up to the nearest byte.” 
(十一) 固定长度的表会更快
如果表中的所有字段都是“固定长度”的,整个表会被认为是 “static” 或 “fixed-length”。 例如,表中没有如下类型的字段: VARCHAR,TEXT,BLOB。只要我们包括了其中一个这些字段,那么这个表就不是“固定长度静态表”了,这样,MySQL 引擎会用另一种方法来处理。 固定长度的表会提高性能,因为MySQL搜寻得会更快一些,因为这些固定的长度是很容易计算下一个数据的偏移量的,所以读取的自然也会很快。而如果字段不是定长的,那么,每一次要找下一条的话,需要程序找到主键。 并且,固定长度的表也更容易被缓存和重建。不过,唯一的副作用是,固定长度的字段会浪费一些空间,因为定长的字段无论我们用不用,他都是要分配那么多的空间。另外在取出值的时候要使用trim去除空格 
(十二)垂直分割
“垂直分割”是一种把数据库中的表按列变成几张表的方法,这样可以降低表的复杂度和字段的数目,从而达到优化的目的。
(十三)拆分大的DELETE或INSERT
如果我们需要在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,我们需要非常小心,要避免我们的操作让我们的整个网站停止。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。如果我们把我们的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让我们的WEB服务Crash,还可能会让我们的整台服务器马上掛了。所以在使用时使用LIMIT 控制数量操作记录的数量。
(十四)越小的列会越快  
对于大多数的数据库引擎来说,硬盘操作可能是最重大的瓶颈。所以,把我们的数据变得紧凑会对这种情况非常有帮助,因为这减少了对硬盘的访问。 参看 MySQL 的文档 Storage Requirements 查看所有的数据类型。 如果一个表只会有几列罢了(比如说字典表,配置表),那么,我们就没有理由使用 INT 来做主键,使用 MEDIUMINT, SMALLINT 或是更小的 TINYINT 会更经济一些。如果我们不需要记录时间,使用 DATE 要比 DATETIME 好得多。 
(十五)选择正确的存储引擎
在MYSQL中有两个存储引擎MyISAM和InnoDB,每个引擎都有利有弊。
MyISAM适合于一些需要大量查询的应用,但是对于大量写操作的支持不是很好。甚至一个update语句就会进行锁表操作,这时读取这张表的所有进程都无法进行操作直至写操作完成。另外MyISAM对于SELECT  COUNT(*)这类的计算是超快无比的。InnoDB 的趋势会是一个非常复杂的存储引擎,对于一些小的应用,它会比 MyISAM 还慢。它支持“行锁” ,于是在写操作比较多的时候,会更优秀。并且,他还支持更多的高级应用,比如:事务。
MyISAM是MYSQL5.5版本以前默认的存储引擎,基于传统的ISAM类型,支持B-Tree,全文检索,但是不是事务安全的,而且不支持外键。不具有原子性。支持锁表。
InnoDB是事务型引擎,支持ACID事务(实现4种事务隔离机制)、回滚、崩溃恢复能力、行锁。以及提供与Oracle一致的不加锁的读取方式。InnoDB存储它的表和索引在一个表空间中,表空间可以包含多个文件。
MyISAM和InnoDB比较,如下图所示:

对于Linux版本的MYSQL  配置文件在 /etc/my.cnf中

在5.5之后默认的存储引擎是INNODB
可以单独进行修改也可以在创建表时修改:
ALTER TABLE tab_name ENGINE INNODB;
(十六)小心永久链接
“永久链接”的目的是用来减少重新创建MySQL链接的次数。当一个链接被创建了,它会永远处在连接的状态,就算是数据库操作已经结束了。而且,自从我们的Apache开始重用它的子进程后——也就是说,下一次的HTTP请求会重用Apache的子进程,并重用相同的 MySQL 链接。 
而且,Apache 运行在极端并行的环境中,会创建很多很多的了进程。这就是为什么这种“永久链接”的机制工作地不好的原因。在我们决定要使用“永久链接”之前,我们需要好好地考虑一下我们的整个系统的架构。
阅读更多
个人分类: 数据库
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭