【工业机器视觉】基于深度学习的仪表盘识读(1)-CSDN博客
数据采集与增强
为了训练出适应多种表型和环境条件的模型,确保数据集的质量与多样性对于模型的成功至关重要。高质量的数据不仅需要准确无误、具有代表性,还需要涵盖尽可能广泛的情况以确保模型的泛化能力。
面对现场数据采集可能遇到的困难,通过精心设计的数据采集策略,如自动采集、人工采集或两者结合的方式,可以有效获取初始数据集。此外,采用数据增强技术,例如图像变换及合成数据生成等方法,能够扩充数据集规模,增加其多样性,从而帮助克服数据不足的问题。
最终,这些措施共同作用,有助于训练出更加稳定、鲁棒的机器学习模型,使其能够在不同条件下保持良好的性能表现。
数据采集
1. 准备USB工业相机
- 选择相机:确保你选择的USB工业相机支持640x480分辨率。确认相机与你的计算机兼容(例如,是否需要额外驱动程序)。
- 连接电源