当前搜索:
对于一个确定串ss,求不同子序列的个数有经典dp
fi,si=∑jfi−1,jf_{i,s_i}=\sum_j f_{i-1,j}
fi,j=fi−1,j,j≠sif_{i,j}=f_{i-1,j},j\neq s_i
因为转移都是形式一样的我试着把所有串的fif_i都加起来,然后就发现FjF_j...
首先像我这种无脑的人可以大力上fft
fin!=∑j=0i(−1)j(ij)(n+i−j)!n!{f_i \over n!}=\sum_{j=0}^i (-1)^j {i\choose j} {(n+i-j)!\over n!}
然而考虑经典错排的递推公式
dn=(n−1)(dn−1+dn−...
好久没做过n=107n=10^7这种正常的递推题了二分图染色转化为棋盘模型,即 N×NN\times N 棋盘上放黑白棋子,每个格子至多放一个,同行同列没有相同颜色的棋子。
令bnb_n为只有一种颜色,那么bn=∑ni=0Cin×Pinb_n=\sum_{i=0}^n C_n^i\times P...