[数学 二项式定理 快速幂] BZOJ 3157 && BZOJ 3516 && BZOJ 4126 国王奇遇记

膜拜神犇n+e:http://trinkle.is-programmer.com/2015/6/30/the-adventures-of-the-king.100058.html


本题按时间复杂度的不同共有三种解法。

只会O(m2)的方法





#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define P 1000000007
using namespace std;
typedef long long ll;

const int N=1005;

ll n,m,inv,mn,nk;
ll C[N][N],f[N];

inline ll Pow(ll a,ll b){
	ll ret=1;
	for (;b;b>>=1,(a*=a)%=P)
		if (b&1)
			(ret*=a)%=P;
	return ret;
}

int main()
{
	freopen("t.in","r",stdin);
	freopen("t.out","w",stdout);
	scanf("%lld%lld",&n,&m);
	C[0][0]=1;
	for (int i=1;i<=m;i++) 
	{
		C[i][0]=1;
		for (int j=1;j<=i;j++)
			(C[i][j]=C[i-1][j]+C[i-1][j-1])%=P;
	}
	if(m==1) 
		return printf("%lld\n",(ll)n*(n+1)/2%P),0;
	mn=Pow(m,n+1);
	inv=Pow(m-1,P-2);
	(f[0]=(mn-1)*inv-1)%=P;
	nk=1;
	for (int k=1;k<=m;k++) 
	{
		for(int j=0;j<k;j++)
			(f[k]+=C[k][j]*((k^j)&1?-1:1)*f[j])%=P;
		(nk*=n)%=P;
		f[k]=(nk*mn+f[k])%P*inv%P;
	}
	printf("%lld\n",f[m]);
	return 0;
}


本题 m2logn的想法也很不错




#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
typedef vector<ll> Vec;

const int P=1e9+7;
const int M=200;

int n,m;
ll C[M+5][M+5];

inline void Pre(){
  C[0][0]=1;
  for (int i=1;i<=M;i++){
    C[i][0]=1;
    for (int j=1;j<=M;j++)
      C[i][j]=(C[i-1][j-1]+C[i-1][j])%P;
  }
}

inline ll Pow(ll a,int b){
  ll ret=1;
  for (;b;b>>=1,a=a*a%P)
    if (b&1)
      ret=ret*a%P;
  return ret;
}

inline Vec Solve(int n){
  Vec tmp,ret;
  ret.resize(m+5);
  if (n==1){
    for (int i=0;i<=m;i++) ret[i]=m;
  }
  else if ((n&1) || n==2){
    tmp=Solve(n-1);
    for (int i=0;i<=m;i++)
      ret[i]=tmp[i]+Pow(n,i)*Pow(m,n)%P,ret[i]%=P;
  }
  else{
    tmp=Solve(n/2);
    for (int i=0;i<=m;i++){
      ll tem=0;
      for (int j=0;j<=i;j++)
	tem+=C[i][j]*Pow(n>>1,i-j)%P*tmp[j],tem%=P;
      ret[i]=tmp[i]+tem*Pow(m,n>>1)%P,ret[i]%=P;
    }
  }
  //printf("%d\n",n); for (int i=0;i<=m;i++) printf("%lld ",ret[i]); printf("\n");
  return ret;
}

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  Pre();
  scanf("%d%d",&n,&m);
  printf("%lld\n",Solve(n)[m]);
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值