[任意模数NTT 三模数NTT] COGS 2294 [HZOI 2015] 释迦

1618人阅读 评论(0) 收藏 举报
分类:

膜拜大佬

可能不敢食用myy的论文啊
只会无脑三模数NTT 拆系数FFT什么的好大啊
于是我们找三个费马质数 使得他们的乘积超过 nP2
然后就可以用CRT合并了
但是正常的合并需要写高精 实际上我们可以tricky点

这里写图片描述

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;

inline char nc(){
  static char buf[100000],*p1=buf,*p2=buf;
  return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline void read(int &x){
  char c=nc(),b=1;
  for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
  for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int P=23333333;
const int M[]={998244353,1004535809,469762049};
const int G[]={3,3,3};
const ll _M=(ll)M[0]*M[1];

inline ll Pow(ll a,int b,int p){
  ll ret=1;
  for (;b;b>>=1,a=a*a%p)
    if (b&1)
      ret=ret*a%p;
  return ret;
}
inline ll mul(ll a,ll b,ll p){
  a%=p; b%=p;
  return ((a*b-(ll)((ll)((long double)a/p*b+1e-3)*p))%p+p)%p;
}

const int m1=M[0],m2=M[1],m3=M[2];
const int inv1=Pow(m1%m2,m2-2,m2),inv2=Pow(m2%m1,m1-2,m1),inv12=Pow(_M%m3,m3-2,m3);
inline int CRT(int a1,int a2,int a3){
  ll A=(mul((ll)a1*m2%_M,inv2,_M)+mul((ll)a2*m1%_M,inv1,_M))%_M;
  ll k=((ll)a3+m3-A%m3)*inv12%m3;
  return (k*(_M%P)+A)%P;
}

const int N=264000;

struct NTT{
  int P,G;
  int num,w[2][N];
  int R[N];
  void Pre(int _P,int _G,int m){
    num=m; P=_P; G=_G;
    int g=Pow(G,(P-1)/num,P);
    w[1][0]=1; for (int i=1;i<num;i++) w[1][i]=(ll)w[1][i-1]*g%P;
    w[0][0]=1; for (int i=1;i<num;i++) w[0][i]=w[1][num-i];
    int L=0; while (m>>=1) L++;
    for (int i=1;i<=num;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
  }
  void FFT(int *a,int n,int r){
    for (int i=0;i<n;i++) if (i<R[i]) swap(a[i],a[R[i]]);
    for (int i=1;i<n;i<<=1)
      for (int j=0;j<n;j+=(i<<1))
    for (int k=0;k<i;k++){
      int x=a[j+k],y=(ll)a[j+i+k]*w[r][num/(i<<1)*k]%P;
      a[j+k]=(x+y)%P; a[j+i+k]=(x+P-y)%P;
    }
    if (!r) for (int i=0,inv=Pow(n,P-2,P);i<n;i++) a[i]=(ll)a[i]*inv%P;
  }
}ntt[3];

int n,m;
int a[3][N];
int A[N],B[N],C[N],D[N];

int main(){
  freopen("annona_squamosa.in","r",stdin);
  freopen("annona_squamosa.out","w",stdout);
  read(n);
  for (int i=0;i<n;i++) read(A[i]);
  for (int i=0;i<n;i++) read(B[i]);
  for (m=1;m<=2*(n-1);m<<=1);
  for (int i=0;i<3;i++) ntt[i].Pre(M[i],G[i],m);
  for (int i=0;i<3;i++){
    memcpy(C,A,sizeof(int)*(m+5)); memcpy(D,B,sizeof(int)*(m+5));
    ntt[i].FFT(C,m,1); ntt[i].FFT(D,m,1);
    for (int j=0;j<m;j++) C[j]=(ll)C[j]*D[j]%ntt[i].P;
    ntt[i].FFT(C,m,0);
    for (int j=0;j<m;j++) a[i][j]=C[j];
  }
  for (int i=0;i<n;i++) printf("%d ",CRT(a[0][i],a[1][i],a[2][i]));
  return 0;
}
查看评论

任意模数FFT 板子

Orz myy
  • L_0_Forever_LF
  • L_0_Forever_LF
  • 2016-10-21 19:16:57
  • 1746

51nod 1172 Partial Sums V2 任意模数FFT

题意 给出一个数组A,经过一次处理,生成一个数组S,数组S中的每个值相当于数组A的累加,比如:A = {1 3 5 6} =&amp;gt; S = {1 4 9 15}。如果对生成的数组S再进行一...
  • qq_33229466
  • qq_33229466
  • 2017-12-18 21:51:45
  • 208

[caioj1456][FFT][拆系数板子]累加

【题意】 给出一串数a[i],定义数组b经过累加变换a得到。 如a{1,2,3,4} 则第一个b是{1,3,6,10} 此后的b则为累加变换b得到 如b{1,3,6,10} 则第二个b{1...
  • Rose_max
  • Rose_max
  • 2017-09-13 13:16:40
  • 380

COGS 2294. [HZOI 2015] 释迦 (FFT mod any prime)

题目描述传送门题目大意:给两个次数界为n的多项式,求这两个多项式的乘积,输出前x的0次项到n-1次项的系数 mod 23333333题解NTT只能求在FFT模数下的值。对于任意模数的题来说,我们可以选...
  • clover_hxy
  • clover_hxy
  • 2017-06-12 16:09:56
  • 348

[51nod 1258] [伯努利数] [多项式求逆] [任意模数NTT] 序列求和 V4

接http://blog.csdn.net/coldef/article/details/57908865上次做一套模拟赛的时候,其中需要求自然数k次幂和,然后我只会n^2的…我记得n^2有20分,n...
  • Coldef
  • Coldef
  • 2017-06-06 11:54:30
  • 948

【FZU】2208 cleaning again【模数质因数以3为众数的三进制NTT】

由Ak=A[0](w3kn)+wkn⋅A[1](w3kn)+w2kn⋅A[2](w3kn)A_{k}=A^{[0]}(w_n^{3k})+w_n^{k}\cdot A^{[1]}(w_n^{3k})+...
  • u013368721
  • u013368721
  • 2015-11-16 19:23:23
  • 1190

NTT任意模数模板(+O(1)快速乘)

NTT任意模数的方法其实有点取巧。两个数列每个有n个数,每个数的大小最多是10^9。如果没有模数,那么卷积过后每个位置的答案一定小于10^9*10^9*n,差不多是10^24左右那么就有一个神奇的做法...
  • qq_35950004
  • qq_35950004
  • 2018-03-07 22:38:09
  • 70

2016北京网络赛 NTT板子(附上素数表)

#include #pragma comment(linker, "/STACK:102400000,102400000") using namespace std; typedef long lon...
  • naipp
  • naipp
  • 2016-10-05 15:05:59
  • 554

[NTT] 快速数论变换学习笔记

FNT和NTT都是快速数论变换
  • HeRaNO
  • HeRaNO
  • 2017-05-05 23:22:28
  • 1811

[模板] MTT实现之FFT拆系数

题目描述: 求两个多项式的卷积,系数对P取模,不保证P可以分解成P=a⋅2k+1P=a⋅2k+1P=a⋅2^k+1 题目分析: P不保证分解成那个形式,那么我们就不可以用NTT了. 如何...
  • qq_35914587
  • qq_35914587
  • 2018-04-16 11:01:25
  • 45
    个人资料
    持之以恒
    等级:
    访问量: 40万+
    积分: 1万+
    排名: 1230
    文章分类
    最新评论